717 research outputs found

    Architecture, design, and modeling of the OPSnet asynchronous optical packet switching node

    Get PDF
    An all-optical packet-switched network supporting multiple services represents a long-term goal for network operators and service providers alike. The EPSRC-funded OPSnet project partnership addresses this issue from device through to network architecture perspectives with the key objective of the design, development, and demonstration of a fully operational asynchronous optical packet switch (OPS) suitable for 100 Gb/s dense-wavelength-division multiplexing (DWDM) operation. The OPS is built around a novel buffer and control architecture that has been shown to be highly flexible and to offer the promise of fair and consistent packet delivery at high load conditions with full support for quality of service (QoS) based on differentiated services over generalized multiprotocol label switching

    The internet: A global telecommunications solution?

    Full text link
    The provision and support of new distributed multimedia services are of prime concern for telecommunications operators and suppliers. Clearly, the potential of the latest Internet protocols to contribute communications components is of considerable interest to them. In this article we first review some of the new types of application and their requirements, and identify the need to support applications that have strict QoS requirements, the so-called critical applications. We review two proposals for enhancing the Internet service architecture. In addition to the integrated services work of the IETF, we look at the more recent proposals for differentiated services in the Internet. We then individually review recent protocol developments proposed to improve the Internet, and to support real-time and multimedia communications. These are IPv6 (the new version of the Internet Protocol), Resource reSerVation Protocol, and Multiprotocol Label Switching, respectively. In each case, we attempt to provide critical reviews in order to assess their suitability for this purpose. Finally, we indicate what the basis of the future infrastructure might be in order to support the full variety of application requirements

    Rapidly IPv6 multimedia management schemes based LTE-A wireless networks

    Get PDF
    Ensuring the best quality of smart multimedia services becomes an essential goal for modern enterprises so there is always a need for effective IP mobility smart management schemes in order to fulfill the following two main functions: (I) interconnecting the moving terminals around the extended indoor smart services. In addition, (II) providing session continuity for instant data transfer in real-time and multimedia applications with negligible latency, efficient bandwidth utilization, and improved reliability. In this context, it found out that the Generalized Multi-Protocol Label Switching (GMPLS) over LTE-A network that offers many advanced services for large numbers of users with higher bandwidths, better spectrum efficiency, and lower latency. In GMPLS, there is an elimination of the routing searches and choice of routing protocols on every core LTE-A router also it provides the architecture simplicity and increases the scalability. A comparative assessment of three types of IPv6 mobility management schemes over the LTE-A provided by using various types of multimedia. By using OPNET Simulator 17.5, In accordance with these schemes, it was proven that the IPv6-GMPLS scheme is the best choice for the system's operation, in comparison to the IPv6-MPLS and Mobile IPv6 for all multimedia offerings and on the overall network performance

    Hybrid SDN Architecture for Resource Consolidation in MPLS Networks

    Get PDF

    MPLS Automatic Bandwidth Allocation via Adaptive Hysteresis

    Get PDF
    Cataloged from PDF version of article.MPLS automatic bandwidth allocation (or provisioning) refers to the process of dynamically updating the bandwidth allocation of a label switched path on the basis of actual aggregate traffic demand on this path. Since bandwidth updates require signaling, it is common to limit the rate of updates to reduce signaling costs. In this article, we propose a model-free asynchronous adaptive hysteresis algorithm for MPLS automatic bandwidth allocation under bandwidth update rate constraints. We validate the effectiveness of the proposed approach by comparing it against existing schemes in (i) voice and (ii) data traffic scenarios. The proposed method can also be used in more general GMPLS networks. (C) 2010 Elsevier B.V. All rights reserved

    Resource Reservation protocol Tunnelling Extension in MPLS for sustainable Mobile Wireless Networks

    Get PDF
    Traffic Engineering (TE) is most effective in networks where some links are heavily utilized and have little or no bandwidth available while others carry little or no traffic. It is of great importance to the recent development of mobile and wireless technologies. Without the process of TE, there is possibilities of having under-utilization and over-utilization problems along the links. It is necessary to consider the implementation that would avoid the goal of network and unguaranteed bandwidth delivery. Therefore, the operators and service providers require seamless combination of network protocols with an improved quality of service (QoS). This paper will be focusing on Resource Reservation Protocol Tunnelling Extension Multiprotocol Layer Switching (RSVP-TE MPLS) for sustainable mobile wireless networks. This will make provision of bandwidth allocation possible by implementing the configurations of the dynamic and static LSPs (Label Switching Paths). The network model designed will be used for this purpose by using simulation approach. The verification of the MPLS model will be presented. It will eventually maximize bandwidth utilization, minimize operation cost and improve QoS

    RSVP performance optimisation using multi-objective evolutionary optimisation

    Get PDF
    The proposed uses of the resource reservation protocol (RSVP) now extend beyond reserving resources in Internet Protocol (IP) networks to being a generic signaling protocol for generalised multi-protocol label switching (GMPLS). In any implementation of RSVP, there are a number of discretionary timing parameters, the values of which affect the efficacy of RSVP in establishing and maintaining reservations/connections. This work frames the interactions between key RSVP timing parameters and performance metrics as a multi-objective optimisation problem which, due to its intractable nature, is tackled using a reputable multi-objective evolutionary algorithm. It is shown that this approach is a feasible means of exploring many of the innate tradeoffs in soft-state protocols such as RSVP. This approach facilitates an extensive comparison of a number of variants of RSVP: standard RSVP, RSVP featuring the recently standardised retransmission algorithm and two subsequent variants of this algorithm, supporting the asymmetric delivery of RSVP control messages. These RSVP variants are compared in terms of multiple performance metrics under a number of different exemplar network conditions, giving insight into their relative merits. Furthermore, the relative significance of the different timing parameters is investigated and their most expedient values determined

    Performance Evaluation of MPLS in a Virtualized Service Provider Core (with/without Class of Service)

    Get PDF
    The last decade has witnessed a major change in the types of traffic scaling the Internet. With the development of real-time applications several challenges were faced within traditional IP networks. Some of these challenges are delay, increased costs faced by the service provider and customer, limited scalability, separate infrastructure costs and high administrative overheads to manage large networks etc. To combat these challenges, researchers have steered towards finding alternate solutions. Over the recent years, we have seen an introduction of a number of virtualized platforms and solutions being offered in the networking industry. Virtual load balancers, virtual firewalls, virtual routers, virtual intrusion detection and preventions systems are just a few examples within the Network Function Virtualization world! Service Providers are trying to find solutions where they could reduce operational expenses while at the same time meet the growing bandwidth demands of their customers. The main aim of this thesis is to evaluate the performance of voice, data and video traffic in a virtualized service provider core. Observations are made on how these traffic types perform on congested vs uncongested links and how Quality of Service treats traffic in a virtualized Service Provider Core using Round Trip Time as a performance metric. This thesis also tries to find if resiliency features such as Fast Reroute provide an additional advantage in failover scenarios within virtualized service provider cores. Juniper Networks vSRX are used to replicate virtual routers in a virtualized service provider core. Twenty-Four tests are carried out to gain a better understanding of how real-time applications and resiliency methods perform in virtualized networks. It is observed that a trade-off exists when introducing QoS on congested primary and secondary label switched paths. What can be observed thru the graphs is having Quality of Service enabled drops more packets however gives us the advantage of lower Round Trip Time for in-profile traffic. On the hand, having Quality of Service disabled, permits more traffic but leads to bandwidth contention between the three traffic classes leading to higher Round-Trip Times. The true benefit of QoS is seen in traffic congestion scenarios. The test bed built in this thesis, shows us that Fast Reroute does not add a significant benefit to aid in the reduction of packet loss during failover scenarios between primary and secondary paths. However, in certain scenarios fast reroute does seem to reduce packet loss specifically for data traffic

    Performance enhancement of large scale networks with heterogeneous traffic.

    Get PDF
    Finally, these findings are applied towards improving the performance of the Differentiated Services architecture by developing a new Refined Assured Forwarding framework where heterogeneous traffic flows share the same aggregate class. The new framework requires minimal modification to the existing Diffserv routers. The efficiency of the new architecture in enhancing the performance of Diffserv is demonstrated by simulation results under different traffic scenarios.This dissertation builds on the notion that segregating traffic with disparate characteristics into separate channels generally results in a better performance. Through a quantitative analysis, it precisely defines the number of classes and the allocation of traffic into these classes that will lead to optimal performance from a latency standpoint. Additionally, it weakens the most generally used assumption of exponential or geometric distribution of traffic service time in the integration versus segregation studies to date by including self-similarity in network traffic.The dissertation also develops a pricing model based on resource usage in a system with segregated channels. Based on analytical results, this dissertation proposes a scheme whereby a service provider can develop compensatory and fair prices for customers with varying QoS requirements under a wide variety of ambient traffic scenarios.This dissertation provides novel techniques for improving the Quality of Service by enhancing the performance of queue management in large scale packet switched networks with a high volume of traffic. Networks combine traffic from multiple sources which have disparate characteristics. Multiplexing such heterogeneous traffic usually results in adverse effects on the overall performance of the network
    corecore