177 research outputs found

    Complex Amplitudes Tracking Loop for multipath channel estimation in OFDM systems over slow to moderate fading

    No full text
    International audienceThis paper deals with multipath channel estimation for Orthogonal Frequency-Division Multiplexing systems under slow to moderate fading conditions. Most of the conventionalmethods exploit only the frequency-domain correlation by estimating the channel at pilot frequencies, and then interpolating the channel frequency response. More advanced algorithms exploit in addition the time-domain correlation, by employing Kalman filters based on the approximation of the time-varying channel. Adopting a parametric approach and assuming a primary acquisition of the path delays, channel estimators have to track the complex amplitudes of the paths. In this perspective, we propose a less complex algorithm than the Kalman methods, inspired by second-order Phase-Locked Loops. An error signal is created from the pilot-aided Least-Squares estimates of the complex amplitudes, and is integrated by the loop to carry out the final estimates. We derive closed-form expressions of the mean squared error of the algorithm and of the optimal loop coefficients versus the channel state, assuming a Rayleigh channel with Jakes'Doppler spectrum. The efficiency of our reduced complexity algorithm is demonstrated, with an asymptotic mean squared error lower than the first-order auto-regressive Kalman filters reported in the literature, and almost the same as a second-order Kalman-based algorithm

    Third-order Complex Amplitudes Tracking Loop for Slow Flat Fading Channel On-Line Estimation

    No full text
    12 pagesInternational audienceThis paper deals with channel estimation in tracking mode over a flat Rayleigh fading channel with Jakes' Doppler Spectrum. Many estimation algorithms exploit the time-domain correlation of the channel by employing a Kalman filter based on a first-order (or sometimes second-order) approximation model of the time-varying channel. However, the nature of the approximation model itself degrades the estimation performance for slow to moderate varying channel scenarios. Furthermore, the Kalman-based algorithms exhibit a certain complexity. Hence, a different model and approach has been investigated in this work to tackle all of these issues. A novel PLL-structured third-order tracking loop estimator with a low complexity is proposed. The connection between a steady-state Kalman filter based on a random walk approximation model and the proposed estimator is first established. Then, a sub-optimal mean-squared-error (MSE) is given in a closed-form expression as a function of the tracking loop parameters. The parameters that minimize this sub-optimal MSE are also given in a closed-form expression. The asymptotic MSE and Bit-Error-Ratio (BER) simulation results demonstrate that the proposed estimator outperforms the first and second order Kalman-based filters reported in literature. The robustness of the proposed estimator is also verified by a mismatch simulation

    On the use of tracking loops for low-complexity multi-path channel estimation in OFDM systems

    No full text
    International audience—This paper treats pilot aided multi-path channel estimation with tracking loops for OFDM systems under slow to moderate fading conditions. Recent works have presented theoretical results for the tuning of second-order and third-order tracking loops in the particular context of Jakes's Doppler spectrum channel. The method for getting the loop coefficients resorted either to the use of a given constraint, which made the obtained coefficients sub-optimal, or was obtained in part by simulations. Here, we perform a global optimization of the coefficients without constraints to get the optimal coefficients, and analytical formulas are provided. One remarkable result of this optimization is that only the natural frequency depends on the transmission parameters, i.e., the channel Doppler spectrum, the power delay profile, and the noise variance. Consequently, only one parameter has to be tuned. Moreover, asymptotic performance is formulated in a more general way as a function of the 2rth moments of the Doppler spectrum (r is the loop order). Hence, all our derivations are usable for any Doppler spectrum and are not specific to Jakes's Doppler spectrum. A complete table sums up for the three orders the theoretical results of the optimal coefficients together with the asymptotic performance. The performance is also compared with that of the asymptotic Kalman filter

    Simplified Random-Walk-Model-Based Kalman Filter for Slow to Moderate Fading Channel Estimation in OFDM Systems

    No full text
    12 pagesInternational audienceThis study deals with multi-path channel estimation for orthogonal frequency division multiplexing systems under slow to moderate fading conditions. Advanced algorithms exploit the channel time-domain correlation by using Kalman Filters (KFs) based on an approximation of the time-varying channel. Recently, it was shown that under slow to moderate fading, near optimal channel multi-path complex amplitude estimation can be obtained by using the integrated Random Walk (RW) model as the channel approximation. To reduce the complexity of the high-dimensional RW-KF for joint estimation of the multi-path complex amplitudes, we propose using a lower dimensional RW-KF that estimates the complex amplitude of each path separately. We demonstrate that this amounts to a simplification of the joint multi-path Kalman gain formulation through the Woodbury's identities. Hence, this new algorithm consists of a superposition of independent single-path single-carrier KFs, which were optimized in our previous studies. This observation allows us to adapt the optimization to the actual multi-path multi-carrier scenario, to provide analytic formulae for the mean-square error performance and the optimal tuning of the proposed estimator directly as a function of the physical parameters of the channel (Doppler frequency, Signal-to-Noise-Ratio, Power Delay Profile). These analytic formulae are given for the first-, second-, and third-order RW models used in the KF. The proposed per-path KF is shown to be as efficient as the exact KF (i.e., the joint multipath KF), and outperforms the autoregressive-model-based KFs proposed in the literature

    Recursive receivers for diversity channels with correlated flat fading

    Get PDF
    Copyright © 2003 IEEEThis paper addresses the design and performance of time-recursive receivers for diversity based communication systems with flat Rayleigh or Ricean fading. The paper introduces a general state-space model for such systems, where there is temporal correlation in the channel gain. Such an approach encompasses a wide range of diversity systems such as spatial diversity, frequency diversity, and code diversity systems which are used in practice. The paper describes a number of noncoherent receiver structures derived from both sequence and a posteriori probability-based cost functions and compares their performance using an orthogonal frequency-division multiplex example. In this example, the paper shows how a standard physical delay-Doppler scattering channel model can be approximated by the proposed state-space model. The simulations show that significant performance gains can be made by exploiting temporal, as well as diversity channel correlations. The paper argues that such time-recursive receivers offer some advantages over block processing schemes such as computational and memory requirement reductions and the easier incorporation of adaptivity in the receiver structures.Nguyen, V.K.; White, L.B.; Jaffrot, E.; Soamiadana, M.; Fijalkow, I

    Complex amplitudes tracking loop for multi-path channel estimation in OFDM systems: Synthesis and extension

    No full text
    version corrigée (4 corrections en rouge dans les formules par rapport à la publication de la conférence)International audienceThis study deals with pilot-aided multi-path channel estimation for orthogonal frequency division multiplexing (OFDM) systems under slow to moderate fading conditions. Some algorithms exploit the channel time-domain correlation by using Kalman filters (KFs) to track the channel multi-path complex amplitudes (CAs), assuming a primary acquisition of the delays. Recently, it was shown that less complex algorithms, based on a second-order Complex Amplitude Tracking Loop (CATL) structure and a Least-Square (LS) pilot-aided error signal, can also reach near optimal asymptotic mean-squared error (MSE) performance. The LS-CATL-based algorithms are inspired by digital Phase-Locked Loops (PLL), as well as by the "prediction-correction" principle of the KF (in steady-state mode). This paper sums up and extends our previous results for the tuning and steady-state performance of the LS-CATL algorithm: analytic formulae are given for the first-, second-, and third-order loops, usable here for the multi-path multi-carrier scenario, and adaptable to any Doppler spectrum model of wide-sense stationary channels

    3-D Mobile-to-Mobile channel tracking with first-order autoregressive model-based Kalman filter

    No full text
    International audienceThis paper deals with channel estimation in Mobile-to-Mobile communication assuming three-dimensional scattering environment. It approximates the channel by a first-order autoregressive (AR(1)) model and tracks it by a Kalman filter. The common method used in the literature to estimate the parameter of AR(1) model is based on a correlation matching criterion. We propose another criterion based on the Minimization of the Asymptotic Variance of the Kalman filter, and we justify why it is more appropriate for slow fading variations. This paper provides the closed-form expression of the optimal AR(1) parameter under minimum asymptotic variance criterion and the approximated expression of the estimation variance in output of the Kalman filter, both for Fixed-to-Mobile and Mobile-to-Mobile communication channels

    Soft-decision equalization techniques for frequency selective MIMO channels

    Get PDF
    Multi-input multi-output (MIMO) technology is an emerging solution for high data rate wireless communications. We develop soft-decision based equalization techniques for frequency selective MIMO channels in the quest for low-complexity equalizers with BER performance competitive to that of ML sequence detection. We first propose soft decision equalization (SDE), and demonstrate that decision feedback equalization (DFE) based on soft-decisions, expressed via the posterior probabilities associated with feedback symbols, is able to outperform hard-decision DFE, with a low computational cost that is polynomial in the number of symbols to be recovered, and linear in the signal constellation size. Building upon the probabilistic data association (PDA) multiuser detector, we present two new MIMO equalization solutions to handle the distinctive channel memory. With their low complexity, simple implementations, and impressive near-optimum performance offered by iterative soft-decision processing, the proposed SDE methods are attractive candidates to deliver efficient reception solutions to practical high-capacity MIMO systems. Motivated by the need for low-complexity receiver processing, we further present an alternative low-complexity soft-decision equalization approach for frequency selective MIMO communication systems. With the help of iterative processing, two detection and estimation schemes based on second-order statistics are harmoniously put together to yield a two-part receiver structure: local multiuser detection (MUD) using soft-decision Probabilistic Data Association (PDA) detection, and dynamic noise-interference tracking using Kalman filtering. The proposed Kalman-PDA detector performs local MUD within a sub-block of the received data instead of over the entire data set, to reduce the computational load. At the same time, all the inter-ference affecting the local sub-block, including both multiple access and inter-symbol interference, is properly modeled as the state vector of a linear system, and dynamically tracked by Kalman filtering. Two types of Kalman filters are designed, both of which are able to track an finite impulse response (FIR) MIMO channel of any memory length. The overall algorithms enjoy low complexity that is only polynomial in the number of information-bearing bits to be detected, regardless of the data block size. Furthermore, we introduce two optional performance-enhancing techniques: cross- layer automatic repeat request (ARQ) for uncoded systems and code-aided method for coded systems. We take Kalman-PDA as an example, and show via simulations that both techniques can render error performance that is better than Kalman-PDA alone and competitive to sphere decoding. At last, we consider the case that channel state information (CSI) is not perfectly known to the receiver, and present an iterative channel estimation algorithm. Simulations show that the performance of SDE with channel estimation approaches that of SDE with perfect CSI
    corecore