11,206 research outputs found

    Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation using Deep Neural Networks

    Full text link
    Predicting the number of clock cycles a processor takes to execute a block of assembly instructions in steady state (the throughput) is important for both compiler designers and performance engineers. Building an analytical model to do so is especially complicated in modern x86-64 Complex Instruction Set Computer (CISC) machines with sophisticated processor microarchitectures in that it is tedious, error prone, and must be performed from scratch for each processor generation. In this paper we present Ithemal, the first tool which learns to predict the throughput of a set of instructions. Ithemal uses a hierarchical LSTM--based approach to predict throughput based on the opcodes and operands of instructions in a basic block. We show that Ithemal is more accurate than state-of-the-art hand-written tools currently used in compiler backends and static machine code analyzers. In particular, our model has less than half the error of state-of-the-art analytical models (LLVM's llvm-mca and Intel's IACA). Ithemal is also able to predict these throughput values just as fast as the aforementioned tools, and is easily ported across a variety of processor microarchitectures with minimal developer effort.Comment: Published at 36th International Conference on Machine Learning (ICML) 201

    Functional programming languages for verification tools: experiences with ML and Haskell

    Get PDF
    We compare Haskell with ML as programming languages for verification tools, based on our experience developing TRUTH in Haskell and the Edinburgh Concurrency Workbench (CWB) in ML. We discuss not only technical language features but also the "worlds" of the languages, for example, the availability of tools and libraries

    Modulo scheduling with reduced register pressure

    Get PDF
    Software pipelining is a scheduling technique that is used by some product compilers in order to expose more instruction level parallelism out of innermost loops. Module scheduling refers to a class of algorithms for software pipelining. Most previous research on module scheduling has focused on reducing the number of cycles between the initiation of consecutive iterations (which is termed II) but has not considered the effect of the register pressure of the produced schedules. The register pressure increases as the instruction level parallelism increases. When the register requirements of a schedule are higher than the available number of registers, the loop must be rescheduled perhaps with a higher II. Therefore, the register pressure has an important impact on the performance of a schedule. This paper presents a novel heuristic module scheduling strategy that tries to generate schedules with the lowest II, and, from all the possible schedules with such II, it tries to select that with the lowest register requirements. The proposed method has been implemented in an experimental compiler and has been tested for the Perfect Club benchmarks. The results show that the proposed method achieves an optimal II for at least 97.5 percent of the loops and its compilation time is comparable to a conventional top-down approach, whereas the register requirements are lower. In addition, the proposed method is compared with some other existing methods. The results indicate that the proposed method performs better than other heuristic methods and almost as well as linear programming methods, which obtain optimal solutions but are impractical for product compilers because their computing cost grows exponentially with the number of operations in the loop body.Peer ReviewedPostprint (published version
    corecore