252 research outputs found

    Black-Box Analysis: GPTs Across Time in Legal Textual Entailment Task

    Full text link
    The evolution of Generative Pre-trained Transformer (GPT) models has led to significant advancements in various natural language processing applications, particularly in legal textual entailment. We present an analysis of GPT-3.5 (ChatGPT) and GPT-4 performances on COLIEE Task 4 dataset, a prominent benchmark in this domain. The study encompasses data from Heisei 18 (2006) to Reiwa 3 (2021), exploring the models' abilities to discern entailment relationships within Japanese statute law across different periods. Our preliminary experimental results unveil intriguing insights into the models' strengths and weaknesses in handling legal textual entailment tasks, as well as the patterns observed in model performance. In the context of proprietary models with undisclosed architectures and weights, black-box analysis becomes crucial for evaluating their capabilities. We discuss the influence of training data distribution and the implications on the models' generalizability. This analysis serves as a foundation for future research, aiming to optimize GPT-based models and enable their successful adoption in legal information extraction and entailment applications.Comment: ISAILD@KSE 202

    Attentive Deep Neural Networks for Legal Document Retrieval

    Full text link
    Legal text retrieval serves as a key component in a wide range of legal text processing tasks such as legal question answering, legal case entailment, and statute law retrieval. The performance of legal text retrieval depends, to a large extent, on the representation of text, both query and legal documents. Based on good representations, a legal text retrieval model can effectively match the query to its relevant documents. Because legal documents often contain long articles and only some parts are relevant to queries, it is quite a challenge for existing models to represent such documents. In this paper, we study the use of attentive neural network-based text representation for statute law document retrieval. We propose a general approach using deep neural networks with attention mechanisms. Based on it, we develop two hierarchical architectures with sparse attention to represent long sentences and articles, and we name them Attentive CNN and Paraformer. The methods are evaluated on datasets of different sizes and characteristics in English, Japanese, and Vietnamese. Experimental results show that: i) Attentive neural methods substantially outperform non-neural methods in terms of retrieval performance across datasets and languages; ii) Pretrained transformer-based models achieve better accuracy on small datasets at the cost of high computational complexity while lighter weight Attentive CNN achieves better accuracy on large datasets; and iii) Our proposed Paraformer outperforms state-of-the-art methods on COLIEE dataset, achieving the highest recall and F2 scores in the top-N retrieval task.Comment: Preprint version. The official version will be published in Artificial Intelligence and Law journa

    NeCo@ALQAC 2023: Legal Domain Knowledge Acquisition for Low-Resource Languages through Data Enrichment

    Full text link
    In recent years, natural language processing has gained significant popularity in various sectors, including the legal domain. This paper presents NeCo Team's solutions to the Vietnamese text processing tasks provided in the Automated Legal Question Answering Competition 2023 (ALQAC 2023), focusing on legal domain knowledge acquisition for low-resource languages through data enrichment. Our methods for the legal document retrieval task employ a combination of similarity ranking and deep learning models, while for the second task, which requires extracting an answer from a relevant legal article in response to a question, we propose a range of adaptive techniques to handle different question types. Our approaches achieve outstanding results on both tasks of the competition, demonstrating the potential benefits and effectiveness of question answering systems in the legal field, particularly for low-resource languages.Comment: ISAILD@KSE 202

    Exploring the State of the Art in Legal QA Systems

    Full text link
    Answering questions related to the legal domain is a complex task, primarily due to the intricate nature and diverse range of legal document systems. Providing an accurate answer to a legal query typically necessitates specialized knowledge in the relevant domain, which makes this task all the more challenging, even for human experts. QA (Question answering systems) are designed to generate answers to questions asked in human languages. They use natural language processing to understand questions and search through information to find relevant answers. QA has various practical applications, including customer service, education, research, and cross-lingual communication. However, they face challenges such as improving natural language understanding and handling complex and ambiguous questions. Answering questions related to the legal domain is a complex task, primarily due to the intricate nature and diverse range of legal document systems. Providing an accurate answer to a legal query typically necessitates specialized knowledge in the relevant domain, which makes this task all the more challenging, even for human experts. At this time, there is a lack of surveys that discuss legal question answering. To address this problem, we provide a comprehensive survey that reviews 14 benchmark datasets for question-answering in the legal field as well as presents a comprehensive review of the state-of-the-art Legal Question Answering deep learning models. We cover the different architectures and techniques used in these studies and the performance and limitations of these models. Moreover, we have established a public GitHub repository where we regularly upload the most recent articles, open data, and source code. The repository is available at: \url{https://github.com/abdoelsayed2016/Legal-Question-Answering-Review}

    Comparative Analysis of Artificial Intelligence for Indian Legal Question Answering (AILQA) Using Different Retrieval and QA Models

    Full text link
    Legal question-answering (QA) systems have the potential to revolutionize the way legal professionals interact with case law documents. This paper conducts a comparative analysis of existing artificial intelligence models for their utility in answering legal questions within the Indian legal system, specifically focusing on Indian Legal Question Answering (AILQA) and our study investigates the efficacy of different retrieval and QA algorithms currently available. Utilizing the OpenAI GPT model as a benchmark, along with query prompts, our investigation shows that existing AILQA systems can automatically interpret natural language queries from users and generate highly accurate responses. This research is particularly focused on applications within the Indian criminal justice domain, which has its own set of challenges due to its complexity and resource constraints. In order to rigorously assess the performance of these models, empirical evaluations are complemented by feedback from practicing legal professionals, thereby offering a multifaceted view on the capabilities and limitations of AI in the context of Indian legal question-answering
    • …
    corecore