520 research outputs found

    Teaching Discrete Structures: A systematic review of the literature

    Get PDF
    This survey paper reviews a large sample of publications on the teaching of discrete structures and discrete mathematics in computer science curricula. The approach is systematic, in that a structured search of electronic resources has been conducted, and the results are presented and quantitatively analysed. A number of broad themes in discrete structures education are identified relating to course content, teaching strategies and the means of evaluating the success of a course

    Teaching Discrete Structures: A systematic review of the literature

    Get PDF
    This survey paper reviews a large sample of publications on the teaching of discrete structures and discrete mathematics in computer science curricula. The approach is systematic, in that a structured search of electronic resources has been conducted, and the results are presented and quantitatively analysed. A number of broad themes in discrete structures education are identified relating to course content, teaching strategies and the means of evaluating the success of a course

    An Overview of the New ACM/IEEE Information Technology Curricular Framework

    Get PDF
    ACM and IEEE have developed a curricular report titled, “Information Technology Curricula 2017: Curriculum Guidelines for Baccalaureate Degree Programs in Information Technology,” known also as IT2017. The development of this report has received worldwide content contributions from industry and academia through surveys as well as many international conferences and workshops. An open online publication of the report was made available in December 2017. This paper presents a digest of the content of the report, the IT curricular framework, and suggestions for its use in developing new information technology programs or enhancing existing ones. The heart of the IT curricular framework is a set of competencies identified through knowledge, skills, and dispositions, as supported by pedagogical research. The paper also describes ways in which institutions could use the curricular framework not only to develop information technology degree programs, but also to improve and enhance related computing programs

    ACM Curriculum Reports: A Pedagogic Perspective

    Get PDF
    In this paper, we illuminate themes that emerged in interviews with participants in the major curriculum recommendation efforts: we characterize the way the computing community interacts with and influences these reports and introduce the term “pedagogic projection” to describe implicit assumptions of how these reports will be used in practice. We then illuminate how this perceived use has changed over time and may affect future reports

    A Competency-based Approach toward Curricular Guidelines for Information Technology Education

    Get PDF
    The Association for Computing Machinery and the IEEE Computer Society have launched a new report titled, Curriculum Guidelines for Baccalaureate Degree Programs in Information Technology (IT2017). This paper discusses significant aspects of the IT2017 report and focuses on competency-driven learning rather than delivery of knowledge in information technology (IT) programs. It also highlights an IT curricular framework that meets the growing demands of a changing technological world in the next decade. Specifically, the paper outlines ways by which baccalaureate IT programs might implement the IT curricular framework and prepare students with knowledge, skills, and dispositions to equip graduates with competencies that matter in the workplace. The paper suggests that a focus on competencies allows academic departments to forge collaborations with employers and engage students in professional practice experiences. It also shows how professionals and educators might use the report in reviewing, updating, and creating baccalaureate IT degree programs worldwide

    Identification and Evaluation of Predictors for Learning Success and of Models for Teaching Computer Programming in Contemporary Contexts

    Get PDF
    Introductory undergraduate computer programming courses are renowned for higher than average failure and withdrawal rates when compared to other subject areas. The closer partnership between higher education and the rapidly expanding digital technology industry, as demonstrated by the establishment of new Degree Apprenticeships in computer science and digital technologies, requires efficient and effective means for teaching programming skills. This research, therefore, aimed to identify reliable predictors of success in learning programming or vulnerability to failure. The research also aimed to evaluate teaching methods and remedial interventions towards recommending a teaching model that supported and engaged learners in contemporary contexts that were relevant to the workplace. Investigation of qualifications designed to prepare students for undergraduate computer science courses revealed that A-level entrants achieved significantly higher programming grades than BTEC students. However, there was little difference between the grades of those with and those without previous qualifications in computing or ICT subjects. Analysis of engagement metrics revealed a strong correlation between extent of co-operation and programming grade, in contrast to a weak correlation between programming grade and code understanding. Further analysis of video recordings, interviews and observational records distinguished between the type of communication that helped peers comprehend tasks and concepts, and other forms of communication that were only concerned with completing tasks. Following the introduction of periodic assessment, essentially converting a single final assessment to three staged summative assessment points, it was found that failing students often pass only one of the three assignment parts. Furthermore, only 10% of those who failed overall had attempted all three assignments. Reasons for failure were attributed to ‘surface’ motivations (such as regulating efforts to achieve a minimum pass of 40%), ineffective working habits or stressful personal circumstances rather than any fundamental difficulty encountered with subject material. A key contribution to pedagogical practice made by this research is to propose an ‘incremental’ teaching model. This model is informed by educational theory and empirical evidence and comprises short cycles of three activities: presenting new topic information, tasking students with a relevant exercise and then demonstrating and discussing the exercise solution. The effectiveness of this model is evidenced by increased engagement, increased quiz scores at the end of each teaching session and increased retention of code knowledge at the end of the course

    Factors Affecting the Adoption of Peer Instruction in Computing Courses

    Get PDF
    Peer Instruction (PI) as defined by Mazur, and variations on this pedagogic technique, have been in use in computing courses for about a decade. Despite dozens of educational research publications documenting positive learning effects, improved retention, student acceptance, and effectiveness for large classes; PI does not appear to be widely adopted for computing courses. This paper reports on a three-way investigation into this apparent contradiction. First, the authors reflect on their own adoption, practice, experience, and abandonment of the use of PI in computing courses. Second, we surveyed the literature regarding the use of PI in computing courses and present a summary of the research findings, variations, and extensions to PI used in computing courses. Third, a survey of computing instructors was conducted to gauge the attitude toward PI in computing courses. To add context, this report considers publications documenting usage of PI in STEM courses, and the adoption of other pedagogic techniques in computing. Particular effort was made to identify the reasons computing instructors don’t adopt PI. This report also includes advice to instructors considering adopting PI in computing courses

    Coding in schools

    Get PDF

    Creating a Multifarious Cyber Science Major

    Get PDF
    Existing approaches to computing-based cyber undergraduate majors typically take one of two forms: a broad exploration of both technical and human aspects, or a deep technical exploration of a single discipline relevant to cybersecurity. This paper describes the creation of a third approach—a multifarious major, consistent with Cybersecurity Curricula 2017, the ABET Cybersecurity Program Criteria, and the National Security Agency Center for Academic Excellence—Cyber Operations criteria. Our novel curriculum relies on a 10-course common foundation extended by one of five possible concentrations, each of which is delivered through a disciplinary lens and specialized into a highly relevant computing interest area serving society’s diverse cyber needs. The journey began years ago when we infused cybersecurity education throughout our programs, seeking to keep offerings and extracurricular activities relevant in society’s increasingly complex relationship with cyberspace. This paper details the overarching design principles, decision-making process, benchmarking, and feedback elicitation activities. A surprising key step was merging several curricula proposals into a single hybrid option. The new major attracted a strong initial cohort, meeting our enrollment goals and exceeding our diversity goals. We provide several recommendations for any institution embarking on a process of designing a new cyber-named major
    corecore