91,731 research outputs found

    Predicting college basketball match outcomes using machine learning techniques: some results and lessons learned

    Full text link
    Most existing work on predicting NCAAB matches has been developed in a statistical context. Trusting the capabilities of ML techniques, particularly classification learners, to uncover the importance of features and learn their relationships, we evaluated a number of different paradigms on this task. In this paper, we summarize our work, pointing out that attributes seem to be more important than models, and that there seems to be an upper limit to predictive quality

    Predictive Analytics for Fantasy Football: Predicting Player Performance Across the NFL

    Get PDF
    The goal of this research is to develop a quantitative method of ranking and listing players in terms of performance. These rankings can then be used to evaluate players prior to and during a fantasy football draft. To produce these rankings, we develop a methodology for forecasting the performance of each individual player (on different metrics) for the upcoming season (16 games) and use these forecasts to estimate player fantasy football scores for the 2018 season. More specifically, this work answers the following: In what order should players be drafted in a 2018 fantasy football draft and why? Which players can be expected to perform the best at their given position (Quarterback, Running back, Wide Receiver, Kicker, Team Defense) in 2018, and which players should we expect to perform poorly

    Optimaztion of Fantasy Basketball Lineups via Machine Learning

    Get PDF
    Machine learning is providing a way to glean never before known insights from the data that gets recorded every day. This paper examines the application of machine learning to the novel field of Daily Fantasy Basketball. The particularities of the fantasy basketball ruleset and playstyle are discussed, and then the results of a data science case study are reviewed. The data set consists of player performance statistics as well as Fantasy Points, implied team total, DvP, and player status. The end goal is to evaluate how accurately the computer can predict a player’s fantasy performance based off a chosen feature set, selection algorithm, and probabilistic methods

    Integration of Forecasting, Scheduling, Machine Learning, and Efficiency Improvement Methods into the Sport Management Industry

    Get PDF
    Sport management is a complicated and economically impactful industry and involves many crucial decisions: such as which players to retain or release, how many concession vendors to add, how many fans to expect, what teams to schedule, and many others are made each offseason and changed frequently. The task of making such decisions effectively is difficult, but the process can be made easier using methods of industrial and systems engineering (ISE). Integrating methods such as forecasting, scheduling, machine learning, and efficiency improvement from ISE can be revolutionary in helping sports organizations and franchises be consistently successful. Research shows areas including player evaluation, analytics, fan attendance, stadium design, accurate scheduling, play prediction, player development, prevention of cheating, and others can be improved when ISE methods are used to target inefficient or wasteful areas

    Raw and Count Data Comparability of Hip-Worn ActiGraph GT3X+ and Link Accelerometers

    Full text link
    To enable inter- and intrastudy comparisons it is important to ascertain comparability among accelerometer models. Purpose: The purpose of this study was to compare raw and count data between hip-worn ActiGraph GT3X+ and GT9X Link accelerometers. Methods: Adults (n = 26 (n = 15 women); age, 49.1 T 20.0 yr) wore GT3X+ and Link accelerometers over the right hip for an 80-min protocol involving 12–21 sedentary, household, and ambulatory/exercise activities lasting 2–15 min each. For each accelerometer, mean and variance of the raw (60 Hz) data for each axis and vector magnitude (VM) were extracted in 30-s epochs. A machine learning model (Montoye 2015) was used to predict energy expenditure in METs from the raw data. Raw data were also processed into activity counts in 30-s epochs for each axis and VM, with Freedson 1998 and 2011 count-based regression models used to predictMETs. Time spent in sedentary, light, moderate, and vigorous intensities was derived from predicted METs from each model. Correlations were calculated to compare raw and count data between accelerometers, and percent agreement was used to compare epoch-by-epoch activity intensity. Results: For raw data, correlations for mean acceleration were 0.96 T 0.05, 0.89 T 0.16, 0.71 T 0.33, and 0.80 T 0.28, and those for variance were 0.98 T 0.02, 0.98 T 0.03, 0.91 T 0.06, and 1.00 T 0.00 in the X, Y, and Z axes and VM, respectively. For count data, corresponding correlations were 1.00 T 0.01, 0.98 T 0.02, 0.96 T 0.04, and 1.00 T 0.00, respectively. Freedson 1998 and 2011 count-based models had significantly higher percent agreement for activity intensity (95.1% T 5.6% and 95.5% T 4.0%) compared with theMontoye 2015 raw data model (61.5% T 27.6%; P G 0.001). Conclusions: Count data were more highly comparable than raw data between accelerometers. Data filtering and/or more robust raw data models are needed to improve raw data comparability between ActiGraph GT3X+ and Link accelerometers

    Coordinated Multi-Agent Imitation Learning

    Get PDF
    We study the problem of imitation learning from demonstrations of multiple coordinating agents. One key challenge in this setting is that learning a good model of coordination can be difficult, since coordination is often implicit in the demonstrations and must be inferred as a latent variable. We propose a joint approach that simultaneously learns a latent coordination model along with the individual policies. In particular, our method integrates unsupervised structure learning with conventional imitation learning. We illustrate the power of our approach on a difficult problem of learning multiple policies for fine-grained behavior modeling in team sports, where different players occupy different roles in the coordinated team strategy. We show that having a coordination model to infer the roles of players yields substantially improved imitation loss compared to conventional baselines.Comment: International Conference on Machine Learning 201
    • …
    corecore