150 research outputs found

    Sigma-Delta modulation based distributed detection in wireless sensor networks

    Get PDF
    We present a new scheme of distributed detection in sensor networks using Sigma-Delta modulation. In the existing works local sensor nodes either quantize the observation or directly scale the analog observation and then transmit the processed information independently over wireless channels to a fusion center. In this thesis we exploit the advantages of integrating modulation as a local processor into sensor design and propose a novel mixing topology of parallel and serial configurations for distributed detection system, enabling each sensor to transmit binary information to the fusion center, while preserving the analog information through collaborative processing. We develop suboptimal fusion algorithms for the proposed system and provide both theoretical analysis and various simulation results to demonstrate the superiority of our proposed scheme in both AWGN and fading channels in terms of the resulting detection error probability by comparison with the existing approaches

    Σ-Δ Modulators - Stability Analysis and Optimization

    Get PDF

    An RF Carrier Bursting System using Partial Quantization Noise Cancellation

    Get PDF
    This paper introduces a novel method for bandpass cancellation of the quantization noise occurring in high efficiency, envelope pulsed transmitter architectures - or carrier bursting. An equivalent complex baseband model of the proposed system, including the Sigma Delta-modulator and cancellation signal generation, is developed. Analysis of the baseband model is performed, leading to analytical expressions of the power amplifier drain efficiency, assuming the use of an ideal class B power amplifier. These expressions are further used to study the impact of key system parameters, i.e. the compensation signal variance and clipping probability, on the class~B power amplifier drain efficiency and signal-to-noise ratio. The paper concludes with simulations followed by practical measurements in order to validate the functionality of the method and to evaluate the performance-trend predictions made by the theoretical framework in terms of efficiency and spectral purity

    Design and analysis of short word length DSP systems for mobile communication

    Get PDF
    Recently, many general purpose DSP applications such as Least Mean Squares-Like single-bit adaptive filter algorithms have been developed using the Short Word Length (SWL) technique and have been shown to achieve similar performance as multi-bit systems. A key function in SWL systems is sigma delta modulation (ΣΔM) that operates at an over sampling ratio (OSR), in contrast to the Nyquist rate sampling typically used in conventional multi-bit systems. To date, the analysis of SWL (or single-bit) DSP systems has tended to be performed using high-level tools such as MATLAB, with little work reported relating to their hardware implementation, particularly in Field Programmable Gate Arrays (FPGAs). This thesis explores the hardware implementation of single-bit systems in FPGA using the design and implementation in VHDL of a single-bit ternary FIR-like filter as an illustrative example. The impact of varying OSR and bit-width of the SWL filter has been determined, and a comparison undertaken between the area-performance-power characteristics of the SWL FIR filter compared to its equivalent multi-bit filter. In these experiments, it was found that single-bit FIR-like filter consistently outperforms the multi-bit technique in terms of its area, performance and power except at the highest filter orders analysed in this work. At higher orders, the ΣΔ approach retains its power and performance advantages but exhibits slightly higher chip area. In the second stage of thesis, three encoding techniques called canonical signed digit (CSD), 2’s complement, and Redundant Binary Signed Digit (RBSD) were designed and investigated on the basis of area-performance in FPGA at varying OSR. Simulation results show that CSD encoding technique does not offer any significant improvement as compared to 2’s complement as in multi-bit domain. Whereas, RBSD occupies double the chip area than other two techniques and has poor performance. The stability of the single-bit FIR-like filter mainly depends upon IIR remodulator due to its recursive nature. Thus, we have investigated the stability IIR remodulator and propose a new model using linear analysis and root locus approach that takes into account the widely accepted second order sigma-delta modulator state variable upper bounds. Using proposed model we have found new feedback parameters limits that is a key parameter in single-bit IIR remodulator stability analysis. Further, an analysis of single-bit adaptive channel equalization in MATLAB has been performed, which is intended to support the design and development of efficient algorithm for single-bit channel equalization. A new mathematical model has been derived with all inputs, coefficients and outputs in single-bit domain. The model was simulated using narrowband signals in MATLAB and investigated on the basis of symbol error rate (SER), signal-to-noise ratio (SNR) and minimum mean squared error (MMSE). The results indicate that single-bit adaptive channel equalization is achievable with narrowband signals but that the harsh quantization noise has great impact in the convergence

    Differential encoding techniques applied to speech signals

    Get PDF
    The increasing use of digital communication systems has produced a continuous search for efficient methods of speech encoding. This thesis describes investigations of novel differential encoding systems. Initially Linear First Order DPCM systems employing a simple delayed encoding algorithm are examined. The systems detect an overload condition in the encoder, and through a simple algorithm reduce the overload noise at the expense of some increase in the quantization (granular) noise. The signal-to-noise ratio (snr) performance of such d codec has 1 to 2 dB's advantage compared to the First Order Linear DPCM system. In order to obtain a large improvement in snr the high correlation between successive pitch periods as well as the correlation between successive samples in the voiced speech waveform is exploited. A system called "Pitch Synchronous First Order DPCM" (PSFOD) has been developed. Here the difference Sequence formed between the samples of the input sequence in the current pitch period and the samples of the stored decoded sequence from the previous pitch period are encoded. This difference sequence has a smaller dynamic range than the original input speech sequence enabling a quantizer with better resolution to be used for the same transmission bit rate. The snr is increased by 6 dB compared with the peak snr of a First Order DPCM codea. A development of the PSFOD system called a Pitch Synchronous Differential Predictive Encoding system (PSDPE) is next investigated. The principle of its operation is to predict the next sample in the voiced-speech waveform, and form the prediction error which is then subtracted from the corresponding decoded prediction error in the previous pitch period. The difference is then encoded and transmitted. The improvement in snr is approximately 8 dB compared to an ADPCM codea, when the PSDPE system uses an adaptive PCM encoder. The snr of the system increases further when the efficiency of the predictors used improve. However, the performance of a predictor in any differential system is closely related to the quantizer used. The better the quantization the more information is available to the predictor and the better the prediction of the incoming speech samples. This leads automatically to the investigation in techniques of efficient quantization. A novel adaptive quantization technique called Dynamic Ratio quantizer (DRQ) is then considered and its theory presented. The quantizer uses an adaptive non-linear element which transforms the input samples of any amplitude to samples within a defined amplitude range. A fixed uniform quantizer quantizes the transformed signal. The snr for this quantizer is almost constant over a range of input power limited in practice by the dynamia range of the adaptive non-linear element, and it is 2 to 3 dB's better than the snr of a One Word Memory adaptive quantizer. Digital computer simulation techniques have been used widely in the above investigations and provide the necessary experimental flexibility. Their use is described in the text

    1-Bit processing based model predictive control for fractionated satellite missions

    Get PDF
    In this thesis, a 1-bit processing based Model Predictive Control (OBMPC) structure is proposed for a fractionated satellite attitude control mission. Despite the appealing advantages of the MPC algorithm towards constrained MIMO control applications, implementing the MPC algorithm onboard a small satellite is certainly challenging due to the limited onboard resources. The proposed design is based on the 1-bit processing concept, which takes advantage of the affine relation between the 1-bit state feedback and multi-bit parameters to implement a multiplier free MPC controller. As multipliers are the major power consumer in online optimization, the OBMPC structure is proven to be more efficient in comparison to the conventional MPC implementation in term of power and circuit complexity. The system is in digital control nature, affected by quantization noise introduced by Δ∑ modulators. The stability issues and practical design criteria are also discussed in this work. Some other aspects are considered in this work to complete the control system. Firstly, the implementation of the OBMPC system relies on the 1-bit state feedbacks. Hence, 1-bit sensing components are needed to implement the OBMPC system. While the ∆∑ modulator based Microelectromechanical systems (MEMS) gyroscope is considered in this work, it is possible to implement this concept into other sensing components. Secondly, as the proposed attitude mission is based on the wireless inter-satellite link (ISL), a state estimator is required. However, conventional state estimators will once again introduce multi-bit signals, and compromise the simple, direct implementation of the OBMPC controller. Therefore, the 1-bit state estimator is also designed in this work to satisfy the requirements of the proposed fractionated attitude control mission. The simulation for the OBMPC is based on a 2U CubeSat model in a fractionated satellite structure, in which the payload and actuators are separated from the controller and controlled via the ISL. Matlab simulations and FPGA implementation based performance analysis shows that the OBMPC is feasible for fractionated satellite missions and is advantageous over the conventional MPC controllers

    1-Bit processing based model predictive control for fractionated satellite missions

    Get PDF
    In this thesis, a 1-bit processing based Model Predictive Control (OBMPC) structure is proposed for a fractionated satellite attitude control mission. Despite the appealing advantages of the MPC algorithm towards constrained MIMO control applications, implementing the MPC algorithm onboard a small satellite is certainly challenging due to the limited onboard resources. The proposed design is based on the 1-bit processing concept, which takes advantage of the affine relation between the 1-bit state feedback and multi-bit parameters to implement a multiplier free MPC controller. As multipliers are the major power consumer in online optimization, the OBMPC structure is proven to be more efficient in comparison to the conventional MPC implementation in term of power and circuit complexity. The system is in digital control nature, affected by quantization noise introduced by Δ∑ modulators. The stability issues and practical design criteria are also discussed in this work. Some other aspects are considered in this work to complete the control system. Firstly, the implementation of the OBMPC system relies on the 1-bit state feedbacks. Hence, 1-bit sensing components are needed to implement the OBMPC system. While the ∆∑ modulator based Microelectromechanical systems (MEMS) gyroscope is considered in this work, it is possible to implement this concept into other sensing components. Secondly, as the proposed attitude mission is based on the wireless inter-satellite link (ISL), a state estimator is required. However, conventional state estimators will once again introduce multi-bit signals, and compromise the simple, direct implementation of the OBMPC controller. Therefore, the 1-bit state estimator is also designed in this work to satisfy the requirements of the proposed fractionated attitude control mission. The simulation for the OBMPC is based on a 2U CubeSat model in a fractionated satellite structure, in which the payload and actuators are separated from the controller and controlled via the ISL. Matlab simulations and FPGA implementation based performance analysis shows that the OBMPC is feasible for fractionated satellite missions and is advantageous over the conventional MPC controllers

    Study of efficient transmission and reception of image-type data using millimeter waves

    Get PDF
    Evaluation of signal processing and modulation techniques for transmission and reception of image type data via millimeter wave relay satellite
    • …
    corecore