1,157 research outputs found

    Computing the output distribution and selection probabilities of a stack filter from the DNF of its positive Boolean function

    Full text link
    Many nonlinear filters used in practise are stack filters. An algorithm is presented which calculates the output distribution of an arbitrary stack filter S from the disjunctive normal form (DNF) of its underlying positive Boolean function. The so called selection probabilities can be computed along the way.Comment: This is the version published in Journal of Mathematical Imaging and Vision, online first, 1 august 201

    Stack Filter Classifiers

    Full text link

    Satellite content and quenching of star formation in galaxy groups at z ~ 1.8

    Get PDF
    We study the properties of satellites in the environment of massive star-forming galaxies at z ~ 1.8 in the COSMOS field, using a sample of 215 galaxies on the main sequence of star formation with an average mass of ~1011M⊙. At z> 1.5, these galaxies typically trace halos of mass ≳1013M⊙. We use optical-near-infrared photometry to estimate stellar masses and star formation rates (SFR) of centrals and satellites down to ~ 6 × 109M⊙. We stack data around 215 central galaxies to statistically detect their satellite halos, finding an average of ~3 galaxies in excess of the background density. We fit the radial profiles of satellites with simple ÎČ-models, and compare their integrated properties to model predictions. We find that the total stellar mass of satellites amounts to ~68% of the central galaxy, while spectral energy distribution modeling and far-infrared photometry consistently show their total SFR to be 25-35% of the central's rate. We also see significant variation in the specific SFR of satellites within the halo with, in particular, a sharp decrease at <100 kpc. After considering different potential explanations, we conclude that this is likely an environmental signature of the hot inner halo. This effect can be explained in the first order by a simple free-fall scenario, suggesting that these low-mass environments can shut down star formation in satellites on relatively short timescales of ~0.3 Gyr

    Consensus Based Networking of Distributed Virtual Environments

    Get PDF
    Distributed Virtual Environments (DVEs) are challenging to create as the goals of consistency and responsiveness become contradictory under increasing latency. DVEs have been considered as both distributed transactional databases and force-reflection systems. Both are good approaches, but they do have drawbacks. Transactional systems do not support Level 3 (L3) collaboration: manipulating the same degree-of-freedom at the same time. Force-reflection requires a client-server architecture and stabilisation techniques. With Consensus Based Networking (CBN), we suggest DVEs be considered as a distributed data-fusion problem. Many simulations run in parallel and exchange their states, with remote states integrated with continous authority. Over time the exchanges average out local differences, performing a distribued-average of a consistent, shared state. CBN aims to build simulations that are highly responsive, but consistent enough for use cases such as the piano-movers problem. CBN's support for heterogeneous nodes can transparently couple different input methods, avoid the requirement of determinism, and provide more options for personal control over the shared experience. Our work is early, however we demonstrate many successes, including L3 collaboration in room-scale VR, 1000's of interacting objects, complex configurations such as stacking, and transparent coupling of haptic devices. These have been shown before, but each with a different technique; CBN supports them all within a single, unified system

    Characteristics of a detail preserving nonlinear filter.

    Get PDF
    by Lai Wai Kuen.Thesis (M.Phil.)--Chinese University of Hong Kong, 1993.Includes bibliographical references (leaves [119-125]).Abstract --- p.iAcknowledgement --- p.iiTable of Contents --- p.iiiChapter Chapter 1 --- IntroductionChapter 1.1 --- Background - The Need for Nonlinear Filtering --- p.1.1Chapter 1.2 --- Nonlinear Filtering --- p.1.2Chapter 1.3 --- Goal of the Work --- p.1.4Chapter 1.4 --- Organization of the Thesis --- p.1.5Chapter Chapter 2 --- An Overview of Robust Estimator Based Filters Morphological FiltersChapter 2.1 --- Introduction --- p.2.1Chapter 2.2 --- Signal Representation by Sets --- p.2.2Chapter 2.3 --- Robust Estimator Based Filters --- p.2.4Chapter 2.3.1 --- Filters based on the L-estimators --- p.2.4Chapter 2.3.1.1 --- The Median Filter and its Derivations --- p.2.5Chapter 2.3.1.2 --- Rank Order Filters and Derivations --- p.2.9Chapter 2.3.2 --- Filters based on the M-estimators (M-Filters) --- p.2.11Chapter 2.3.3 --- Filter based on the R-estimators --- p.2.13Chapter 2.4 --- Filters based on Mathematical Morphology --- p.2.14Chapter 2.4.1 --- Basic Morphological Operators --- p.2.14Chapter 2.4.2 --- Morphological Filters --- p.2.18Chapter 2.5 --- Chapter Summary --- p.2.20Chapter Chapter 3 --- Multi-Structuring Element Erosion FilterChapter 3.1 --- Introduction --- p.3.1Chapter 3.2 --- Problem Formulation --- p.3.1Chapter 3.3 --- Description of Multi-Structuring Element Erosion Filter --- p.3.3Chapter 3.3.1 --- Definition of Structuring Element for Multi-Structuring Element Erosion Filter --- p.3.4Chapter 3.3.2 --- Binary multi-Structuring Element Erosion Filter --- p.3.9Chapter 3.3.3 --- Selective Threshold Decomposition --- p.3.10Chapter 3.3.4 --- Multilevel Multi-Structuring Element Erosion Filter --- p.3.15Chapter 3.3.5 --- A Combination of Multilevel Multi-Structuring Element Erosion Filter and its Dual --- p.3.21Chapter 3.4 --- Chapter Summary --- p.3.21Chapter Chapter 4 --- Properties of Multi-Structuring Element Erosion FilterChapter 4.1 --- Introduction --- p.4.1Chapter 4.2 --- Deterministic Properties --- p.4.2Chapter 4.2.1 --- Shape of Invariant Signal --- p.4.3Chapter 4.2.1.1 --- Binary Multi-Structuring Element Erosion Filter --- p.4.5Chapter 4.2.1.2 --- Multilevel Multi-Structuring Element Erosion Filter --- p.4.16Chapter 4.2.2 --- Rate of Convergence of Multi-Structuring Element Erosion Filter --- p.4.25Chapter 4.2.2.1 --- Convergent Rate of Binary Multi-Structuring Element Erosion Filter --- p.4.25Chapter 4.2.2.2 --- Convergent Rate of Multilevel Multi-Structuring Element Erosion Filter --- p.4.28Chapter 4.3 --- Statistical Properties --- p.4.30Chapter 4.3.1 --- Output Distribution of Multi-Structuring Element Erosion Filter --- p.4.30Chapter 4.3.1.1 --- One-Dimensional Statistical Analysis of Multilevel Multi-Structuring Element Erosion Filter --- p.4.31Chapter 4.3.1.2 --- Two-Dimensional Statistical Analysis of Multilevel Multi-Structuring Element Erosion Filter --- p.4.32Chapter 4.3.2 --- Discussions on Statistical Properties --- p.4.36Chapter 4.4 --- Chapter Summary --- p.4.40Chapter Chapter 5 --- Performance EvaluationChapter 5.1 --- Introduction --- p.5.1Chapter 5.2 --- Performance Criteria --- p.5.2Chapter 5.2.1 --- Noise Suppression --- p.5.5Chapter 5.2.2 --- Subjective Criterion --- p.5.16Chapter 5.2.3 --- Computational Requirement --- p.5.20Chapter 5.3 --- Chapter Summary --- p.5.23Chapter Chapter 6 --- Recapitulation and Suggestions for Further WorkChapter 6.1 --- Recapitulation --- p.6.1Chapter 6.2 --- Suggestions for Further Work --- p.6.4Chapter 6.2.1 --- Probability Measure Function for the Two-Dimensional Filter --- p.6.4Chapter 6.2.2 --- Hardware Implementation --- p.6.5ReferencesAppendice

    Neural Network Models for Nuclear Treaty Monitoring: Enhancing the Seismic Signal Pipeline with Deep Temporal Convolution

    Get PDF
    Seismic signal processing at the IDC is critical to global security, facilitating the detection and identification of covert nuclear tests in near-real time. This dissertation details three research studies providing substantial enhancements to this pipeline. Study 1 focuses on signal detection, employing a TCN architecture directly against raw real-time data streams and effecting a 4 dB increase in detector sensitivity over the latest operational methods. Study 2 focuses on both event association and source discrimination, utilizing a TCN-based triplet network to extract source-specific features from three-component seismograms, and providing both a complimentary validation measure for event association and a one-shot classifier for template-based source discrimination. Finally, Study 3 focuses on event localization, and employs a TCN architecture against three-component seismograms in order to confidently predict backazimuth angle and provide a three-fold increase in usable picks over traditional polarization analysis

    Resource Efficient Hardware Architecture for Fast Computation of Running Max/Min Filters

    Get PDF
    Running max/min filters on rectangular kernels are widely used in many digital signal and image processing applications. Filtering with a k×k kernel requires of k2−1 comparisons per sample for a direct implementation; thus, performance scales expensively with the kernel size k. Faster computations can be achieved by kernel decomposition and using constant time one-dimensional algorithms on custom hardware. This paper presents a hardware architecture for real-time computation of running max/min filters based on the van Herk/Gil-Werman (HGW) algorithm. The proposed architecture design uses less computation and memory resources than previously reported architectures when targeted to Field Programmable Gate Array (FPGA) devices. Implementation results show that the architecture is able to compute max/min filters, on 1024×1024 images with up to 255×255 kernels, in around 8.4 milliseconds, 120 frames per second, at a clock frequency of 250 MHz. The implementation is highly scalable for the kernel size with good performance/area tradeoff suitable for embedded applications. The applicability of the architecture is shown for local adaptive image thresholding
    • 

    corecore