289,444 research outputs found

    Fast LIDAR-based Road Detection Using Fully Convolutional Neural Networks

    Full text link
    In this work, a deep learning approach has been developed to carry out road detection using only LIDAR data. Starting from an unstructured point cloud, top-view images encoding several basic statistics such as mean elevation and density are generated. By considering a top-view representation, road detection is reduced to a single-scale problem that can be addressed with a simple and fast fully convolutional neural network (FCN). The FCN is specifically designed for the task of pixel-wise semantic segmentation by combining a large receptive field with high-resolution feature maps. The proposed system achieved excellent performance and it is among the top-performing algorithms on the KITTI road benchmark. Its fast inference makes it particularly suitable for real-time applications

    Detecting Overfitting of Deep Generative Networks via Latent Recovery

    Full text link
    State of the art deep generative networks are capable of producing images with such incredible realism that they can be suspected of memorizing training images. It is why it is not uncommon to include visualizations of training set nearest neighbors, to suggest generated images are not simply memorized. We demonstrate this is not sufficient and motivates the need to study memorization/overfitting of deep generators with more scrutiny. This paper addresses this question by i) showing how simple losses are highly effective at reconstructing images for deep generators ii) analyzing the statistics of reconstruction errors when reconstructing training and validation images, which is the standard way to analyze overfitting in machine learning. Using this methodology, this paper shows that overfitting is not detectable in the pure GAN models proposed in the literature, in contrast with those using hybrid adversarial losses, which are amongst the most widely applied generative methods. The paper also shows that standard GAN evaluation metrics fail to capture memorization for some deep generators. Finally, the paper also shows how off-the-shelf GAN generators can be successfully applied to face inpainting and face super-resolution using the proposed reconstruction method, without hybrid adversarial losses

    DeepImageTranslator V2: Analysis of Multimodal Medical Images using Semantic Segmentation Maps Generated through Deep Learning

    Get PDF
    Introduction: Analysis of multimodal medical images often requires the selection of one or many anatomical regions of interest (ROIs) for extraction of useful statistics. This task can prove laborious when a manual approach is used. We have previously developed a user-friendly software tool for image-to-image translation using deep learning. Therefore, we present herein an update to the DeepImageTranslator V2 software with the addition of a tool for multimodal medical image segmentation analysis (hereby referred to as the MMMISA). Methods: The MMMISA was implemented using the Tkinter library; backend computations were implemented using the Pydicom, Numpy, and OpenCV libraries. We tested our software using 4188 slices from whole-body axial 2-deoxy-2-[18F]-fluoroglucose-position emission tomography/ computed tomography scans ([¹⁸F]-FDG-PET/CT) of 10 patients from the American College of Radiology Imaging Network-Head and Neck Squamous Cell Carcinoma (ACRIN-HNSCC) database. Using the deep learning software DeepImageTranslator, a model was trained with 36 randomly selected CT slices and manually labelled semantic segmentation maps. Utilizing the trained model, all the CT scans of the 10 HNSCC patients were segmented with high accuracy. Segmentation maps generated using the deep convolutional network were then used to measure organ specific [¹⁸F]-FDG uptake. We also compared measurements performed using the MMMISA and those made with manually selected ROIs. Results: The MMMISA is a tool that allows user to select ROIs based on deep learning-generated segmentation maps and to compute accurate statistics for these ROIs based on coregistered multimodal images. We found that organ-specific [¹⁸F]-FDG uptake measured using multiple manually selected ROIs is concordant with whole-tissue measurements made with segmentation maps using the MMMISA tool. Doi: 10.28991/HIJ-2022-03-03-07 Full Text: PD
    corecore