557 research outputs found

    Using Monte Carlo Search With Data Aggregation to Improve Robot Soccer Policies

    Full text link
    RoboCup soccer competitions are considered among the most challenging multi-robot adversarial environments, due to their high dynamism and the partial observability of the environment. In this paper we introduce a method based on a combination of Monte Carlo search and data aggregation (MCSDA) to adapt discrete-action soccer policies for a defender robot to the strategy of the opponent team. By exploiting a simple representation of the domain, a supervised learning algorithm is trained over an initial collection of data consisting of several simulations of human expert policies. Monte Carlo policy rollouts are then generated and aggregated to previous data to improve the learned policy over multiple epochs and games. The proposed approach has been extensively tested both on a soccer-dedicated simulator and on real robots. Using this method, our learning robot soccer team achieves an improvement in ball interceptions, as well as a reduction in the number of opponents' goals. Together with a better performance, an overall more efficient positioning of the whole team within the field is achieved

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF

    Discovering Strategic Behaviour of Multi-Agent Systems in Adversary Settings

    Get PDF
    Can specific behaviour strategies be induced from low-level observations of two adversary groups of agents with limited domain knowledge? This paper presents a domain-independent Multi-Agent Strategy Discovering Algorithm (MASDA), which discovers strategic behaviour patterns of a group of agents under the described conditions. The algorithm represents the observed multi-agent activity as a graph, where graph connections correspond to performed actions and graph nodes correspond to environment states at action starts. Based on such data representation, the algorithm applies hierarchical clustering and rule induction to extract and describe strategic behaviour. The discovered strategic behaviour is represented visually as graph paths and symbolically as rules. MASDA was evaluated on RoboCup. Both soccer experts and quantitative evaluation confirmed the relevance of the discovered behaviour patterns

    Argumentation accelerated reinforcement learning

    Get PDF
    Reinforcement Learning (RL) is a popular statistical Artificial Intelligence (AI) technique for building autonomous agents, but it suffers from the curse of dimensionality: the computational requirement for obtaining the optimal policies grows exponentially with the size of the state space. Integrating heuristics into RL has proven to be an effective approach to combat this curse, but deriving high-quality heuristics from people’s (typically conflicting) domain knowledge is challenging, yet it received little research attention. Argumentation theory is a logic-based AI technique well-known for its conflict resolution capability and intuitive appeal. In this thesis, we investigate the integration of argumentation frameworks into RL algorithms, so as to improve the convergence speed of RL algorithms. In particular, we propose a variant of Value-based Argumentation Framework (VAF) to represent domain knowledge and to derive heuristics from this knowledge. We prove that the heuristics derived from this framework can effectively instruct individual learning agents as well as multiple cooperative learning agents. In addition,we propose the Argumentation Accelerated RL (AARL) framework to integrate these heuristics into different RL algorithms via Potential Based Reward Shaping (PBRS) techniques: we use classical PBRS techniques for flat RL (e.g. SARSA(λ)) based AARL, and propose a novel PBRS technique for MAXQ-0, a hierarchical RL (HRL) algorithm, so as to implement HRL based AARL. We empirically test two AARL implementations — SARSA(λ)-based AARL and MAXQ-based AARL — in multiple application domains, including single-agent and multi-agent learning problems. Empirical results indicate that AARL can improve the convergence speed of RL, and can also be easily used by people that have little background in Argumentation and RL.Open Acces

    Information-theoretic Reasoning in Distributed and Autonomous Systems

    Get PDF
    The increasing prevalence of distributed and autonomous systems is transforming decision making in industries as diverse as agriculture, environmental monitoring, and healthcare. Despite significant efforts, challenges remain in robustly planning under uncertainty. In this thesis, we present a number of information-theoretic decision rules for improving the analysis and control of complex adaptive systems. We begin with the problem of quantifying the data storage (memory) and transfer (communication) within information processing systems. We develop an information-theoretic framework to study nonlinear interactions within cooperative and adversarial scenarios, solely from observations of each agent's dynamics. This framework is applied to simulations of robotic soccer games, where the measures reveal insights into team performance, including correlations of the information dynamics to the scoreline. We then study the communication between processes with latent nonlinear dynamics that are observed only through a filter. By using methods from differential topology, we show that the information-theoretic measures commonly used to infer communication in observed systems can also be used in certain partially observed systems. For robotic environmental monitoring, the quality of data depends on the placement of sensors. These locations can be improved by either better estimating the quality of future viewpoints or by a team of robots operating concurrently. By robustly handling the uncertainty of sensor model measurements, we are able to present the first end-to-end robotic system for autonomously tracking small dynamic animals, with a performance comparable to human trackers. We then solve the issue of coordinating multi-robot systems through distributed optimisation techniques. These allow us to develop non-myopic robot trajectories for these tasks and, importantly, show that these algorithms provide guarantees for convergence rates to the optimal payoff sequence

    Exploiting Opponent Modeling For Learning In Multi-agent Adversarial Games

    Get PDF
    An issue with learning effective policies in multi-agent adversarial games is that the size of the search space can be prohibitively large when the actions of both teammates and opponents are considered simultaneously. Opponent modeling, predicting an opponent’s actions in advance of execution, is one approach for selecting actions in adversarial settings, but it is often performed in an ad hoc way. In this dissertation, we introduce several methods for using opponent modeling, in the form of predictions about the players’ physical movements, to learn team policies. To explore the problem of decision-making in multi-agent adversarial scenarios, we use our approach for both offline play generation and real-time team response in the Rush 2008 American football simulator. Simultaneously predicting the movement trajectories, future reward, and play strategies of multiple players in real-time is a daunting task but we illustrate how it is possible to divide and conquer this problem with an assortment of data-driven models. By leveraging spatio-temporal traces of player movements, we learn discriminative models of defensive play for opponent modeling. With the reward information from previous play matchups, we use a modified version of UCT (Upper Conference Bounds applied to Trees) to create new offensive plays and to learn play repairs to counter predicted opponent actions. iii In team games, players must coordinate effectively to accomplish tasks while foiling their opponents either in a preplanned or emergent manner. An effective team policy must generate the necessary coordination, yet considering all possibilities for creating coordinating subgroups is computationally infeasible. Automatically identifying and preserving the coordination between key subgroups of teammates can make search more productive by pruning policies that disrupt these relationships. We demonstrate that combining opponent modeling with automatic subgroup identification can be used to create team policies with a higher average yardage than either the baseline game or domain-specific heuristics

    Recognizing Teamwork Activity In Observations Of Embodied Agents

    Get PDF
    This thesis presents contributions to the theory and practice of team activity recognition. A particular focus of our work was to improve our ability to collect and label representative samples, thus making the team activity recognition more efficient. A second focus of our work is improving the robustness of the recognition process in the presence of noisy and distorted data. The main contributions of this thesis are as follows: We developed a software tool, the Teamwork Scenario Editor (TSE), for the acquisition, segmentation and labeling of teamwork data. Using the TSE we acquired a corpus of labeled team actions both from synthetic and real world sources. We developed an approach through which representations of idealized team actions can be acquired in form of Hidden Markov Models which are trained using a small set of representative examples segmented and labeled with the TSE. We developed set of team-oriented feature functions, which extract discrete features from the high-dimensional continuous data. The features were chosen such that they mimic the features used by humans when recognizing teamwork actions. We developed a technique to recognize the likely roles played by agents in teams even before the team action was recognized. Through experimental studies we show that the feature functions and role recognition module significantly increase the recognition accuracy, while allowing arbitrary shuffled inputs and noisy data

    Deep Learning for Humanoid Robotic Soccer Behaviour Selection

    Get PDF

    Rational hierarchical planning and coordination in multi-agent systems.

    Get PDF
    • …
    corecore