26,317 research outputs found

    Directivity patterns of laser-generated sound in solids: Effects of optical and thermal parameters

    Get PDF
    In the present paper, directivity patterns of laser-generated sound in solids are investigated theoretically. Two main approaches to the calculation of directivity patterns of laser-generated sound are discussed for the most important case of thermo-optical regime of generation. The first approach, which is widely used in practice, is based on the simple modelling of the equivalent thermo-optical source as a mechanical dipole comprising two horizontal forces applied to the surface in opposite directions. The second approach is based on the rigorous theory that takes into account all acoustical, optical and thermal parameters of a solid material and all geometrical and physical parameters of a laser beam. Directivity patterns of laser-generated bulk longitudinal and shear elastic waves, as well as the amplitudes of generated Rayleigh surface waves, are calculated for different values of physical and geometrical parameters and compared with the directivity patterns calculated in case of dipole-source representation. It is demonstrated that the simple approach using a dipole-source representation of laser-generated sound is rather limited, especially for description of generated longitudinal acoustic waves. A practical criterion is established to define the conditions under which the dipole-source representation gives predictions with acceptable errors. It is shown that, for radiation in the normal direction to the surface, the amplitudes of longitudinal waves are especially sensitive to the values of thermal parameters and of the acoustic reflection coefficient from a free solid surface. A discussion is given on the possibility of using such a high sensitivity to the values of the reflection coefficient for investigation of surface properties of real solids.Comment: 14 pages, 7 figure

    Casimir effect with rough metallic mirrors

    Full text link
    We calculate the second order roughness correction to the Casimir energy for two parallel metallic mirrors. Our results may also be applied to the plane-sphere geometry used in most experiments. The metallic mirrors are described by the plasma model, with arbitrary values for the plasma wavelength, the mirror separation and the roughness correlation length, with the roughness amplitude remaining the smallest length scale for perturbation theory to hold. From the analysis of the intracavity field fluctuations, we obtain the Casimir energy correction in terms of generalized reflection operators, which account for diffraction and polarization coupling in the scattering by the rough surfaces. We present simple analytical expressions for several limiting cases, as well as numerical results that allow for a reliable calculation of the roughness correction in real experiments. The correction is larger than the result of the Proximity Force Approximation, which is obtained from our theory as a limiting case (very smooth surfaces).Comment: 16 page

    Topography of (exo)planets

    Full text link
    Current technology is not able to map the topography of rocky exoplanets, simply because the objects are too faint and far away to resolve them. Nevertheless, indirect effect of topography should be soon observable thanks to photometry techniques, and the possibility of detecting specular reflections. In addition, topography may have a strong effect on Earth-like exoplanet climates because oceans and mountains affect the distribution of clouds \citep{Houze2012}. Also topography is critical for evaluating surface habitability \citep{Dohm2015}. We propose here a general statistical theory to describe and generate realistic synthetic topographies of rocky exoplanetary bodies. In the solar system, we have examined the best-known bodies: the Earth, Moon, Mars and Mercury. It turns out that despite their differences, they all can be described by multifractral statistics, although with different parameters. Assuming that this property is universal, we propose here a model to simulate 2D spherical random field that mimics a rocky planetary body in a stellar system. We also propose to apply this model to estimate the statistics of oceans and continents to help to better assess the habitability of distant worlds

    Backscatter of Electromagnetic Waves from a Rough Layer

    Get PDF
    Backscatter of electromagnetic waves from rough surfac

    Topological characterization of antireflective and hydrophobic rough surfaces: are random process theory and fractal modeling applicable?

    Get PDF
    The random process theory (RPT) has been widely applied to predict the joint probability distribution functions (PDFs) of asperity heights and curvatures of rough surfaces. A check of the predictions of RPT against the actual statistics of numerically generated random fractal surfaces and of real rough surfaces has been only partially undertaken. The present experimental and numerical study provides a deep critical comparison on this matter, providing some insight into the capabilities and limitations in applying RPT and fractal modeling to antireflective and hydrophobic rough surfaces, two important types of textured surfaces. A multi-resolution experimental campaign by using a confocal profilometer with different lenses is carried out and a comprehensive software for the statistical description of rough surfaces is developed. It is found that the topology of the analyzed textured surfaces cannot be fully described according to RPT and fractal modeling. The following complexities emerge: (i) the presence of cut-offs or bi-fractality in the power-law power-spectral density (PSD) functions; (ii) a more pronounced shift of the PSD by changing resolution as compared to what expected from fractal modeling; (iii) inaccuracy of the RPT in describing the joint PDFs of asperity heights and curvatures of textured surfaces; (iv) lack of resolution-invariance of joint PDFs of textured surfaces in case of special surface treatments, not accounted by fractal modeling.Comment: 21 pages, 13 figure
    corecore