46 research outputs found

    Estimation-based synthesis of H∞-optimal adaptive FIR filtersfor filtered-LMS problems

    Get PDF
    This paper presents a systematic synthesis procedure for H∞-optimal adaptive FIR filters in the context of an active noise cancellation (ANC) problem. An estimation interpretation of the adaptive control problem is introduced first. Based on this interpretation, an H∞ estimation problem is formulated, and its finite horizon prediction (filtering) solution is discussed. The solution minimizes the maximum energy gain from the disturbances to the predicted (filtered) estimation error and serves as the adaptation criterion for the weight vector in the adaptive FIR filter. We refer to this adaptation scheme as estimation-based adaptive filtering (EBAF). We show that the steady-state gain vector in the EBAF algorithm approaches that of the classical (normalized) filtered-X LMS algorithm. The error terms, however, are shown to be different. Thus, these classical algorithms can be considered to be approximations of our algorithm. We examine the performance of the proposed EBAF algorithm (both experimentally and in simulation) in an active noise cancellation problem of a one-dimensional (1-D) acoustic duct for both narrowband and broadband cases. Comparisons to the results from a conventional filtered-LMS (FxLMS) algorithm show faster convergence without compromising steady-state performance and/or robustness of the algorithm to feedback contamination of the reference signal

    New FxLMAT-Based Algorithms for Active Control of Impulsive Noise

    Get PDF
    In the presence of non-Gaussian impulsive noise (IN) with a heavy tail, active noise control (ANC) algorithms often encounter stability problems. While adaptive filters based on the higher-order error power principle have shown improved filtering capability compared to the least mean square family algorithms for IN, however, the performance of the filtered-x least mean absolute third (FxLMAT) algorithm tends to degrade under high impulses. To address this issue, this paper proposes three modifications to enhance the performance of the FxLMAT algorithm for IN. To improve stability, the first alteration i.e. variable step size FxLMAT (VSSFxLMAT)algorithm is suggested that incorporates the energy of input and error signal but has slow convergence. To improve its convergence, the second modification i.e. filtered x robust normalized least mean absolute third (FxRNLMAT) algorithm is presented but still lacks robustness. Therefore, a third modification i.e. modified filtered-x RNLMAT (MFxRNLMAT) is devised, which is relatively stable when encountered with high impulsive noise. With comparable computational complexity, the proposed MFxRNLMAT algorithm gives better robustness and convergence speed than all variants of the filtered-x least cos hyperbolic algorithm, and filtered-x least mean square algorithm

    Adaptive control of an active seat for occupant vibration reduction

    Get PDF

    Active vibration control systems in the frequency and sub-band domain.

    Get PDF
    Active noise and vibration control has been the subject of intense study in the last two decades due to the increased speed in digital signal processors and the technological development and manufacture of smart materials. This dissertation analyzes an active control system using adaptive digital signal processing techniques and applies it to the vibration reduction of hard disk drives (HDD). Specifically, this work focuses on the implementation of the adaptive algorithm in the frequency and sub-band domains for performance improvement.In this dissertation, selective adaptation in the frequency domain is proposed to alleviate the constructive interference associated with a feedback active control system. A new sub-band adaptive filter architecture without a signal path delay is proposed, and the associated adaptive algorithm is derived. This delayless sub-band algorithm can be applied to the active control systems to improve the convergence rate and trade-off the performance from the various sub-bands. The resulting side effect of the error path delay of the analysis filter bank is analyzed, and two compensation methods are proposed to increase the performance. The frequency domain method and the sub-band decomposition technique are then combined to improve the overall performance. The single-channel active control system is extended to the multiple-channel active control system to reduce the vibration of complex mechanical structure. The optimal performances of three variants of the feedback control system have been derived in terms of the correlation coefficients of the primary disturbances and the impulse responses of the secondary paths. Real time and simulation results are performed to verify the efficiency of the proposed algorithms and techniques

    Active Control of Pressure Pulsation in a Switched Inertance Hydraulic System

    Get PDF
    The nature of digital hydraulic systems may cause pressure pulsation problems. For example, switched inertance hydraulic systems (SIHS), which are applied to adjust or control flow and pressure by a means that does not rely on dissipation of power, have noise problems due to the pulsed nature of the flow. An effective method to reduce the pulsation is important to improve system performance and increase efficiency. Although passive systems to reduce the noise have been shown to be effective in many situations, their attenuation frequency range is limited and they may be bulky. Furthermore, attenuation devices based on expansion chambers, accumulators or hoses are likely to be unsuitable for SIHS as they add compliance to the system and would impair the dynamic response. This thesis is concerned with issues relating to the development of an active noise canceller for attenuating the pressure pulsation which is caused primarily by pulsed flow from high-speed valves in SIHS. Active control methods are widely and successfully applied in the area of structureborne noise (SBN) and air-borne noise (ABN) cancellation. The idea is using the intentional superposition of waves to create a destructive interference pattern such that a reduction of the unwanted noise occurs. However, applications for fluid-borne noise (FBN) attenuation based on the ‘Active noise control (ANC) principle’ are rare due to the restriction of the hardware and experimental apparatus in previous researches. In this thesis, an adaptive controller has been developed for active control of pressure pulsation in hydraulic system. The principle of the adaptive LMS filter and details of the controller design are described and the implementation was carried out through simulation. The designed controller was applied on a vibration test rig initially prior to the hydraulic testing in order to investigate its advantages and limitations in practice. Extensive testing on a switched inertance hydraulic rig proved that the controller, which used a piezoelectric valve with fast response and good bandwidth, is effective and that it has several advantages over previous methods, being effective for low frequency cancellation, with a quick response, and is robust and versatile. A novel method for the accurate measurement of unsteady flowrate in a pipe was proposed. This was applied and validated on a pipe, and was shown to give good results. This method solves the difficulty for measuring the unsteady flowrate currently by using easy-measured signals, such as pressures. It can be used widely for predicting the unsteady flowrate along the pipe.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    On The Dynamics and Control Strategy of Time-Delayed Vibro-Impact Oscillators

    Get PDF
    Being able to control nonlinear oscillators, which are ubiquitous, has significant engineering implications in process development and product sustainability design. The fundamental characteristics of a vibro-impact oscillator, a non-autonomous time-delayed feedback oscillator, and a time-delayed vibro-impact oscillator are studied. Their being stochastic, nonstationary, non-smooth, and dynamically complex render the mitigation of their behaviors in response to linear and stationary inputs very difficult if not entirely impossible. A novel nonlinear control concept featuring simultaneous control of vibration amplitude in the time-domain and spectral response in the frequency-domain is developed and subsequently incorporated to maintain dynamic stability in these nonlinear oscillators by denying bifurcation and route-to-chaos from coming to pass. Convergence of the controller is formulated to be inherently unconditional with the optimization step size being self-adaptive to system identification and control force input. Optimal initial filter weights are also derived to warrant fast convergence rate and short response time. These novel features impart adaptivity, intelligence, and universal applicability to the wavelet based nonlinear time-frequency control methodology. The validity of the controller design is demonstrated by evaluating its performance against PID and fuzzy logic controllers in controlling the aperiodic, broad bandwidth, discontinuous responses characteristic of the time-delayed, vibro-impact oscillator

    The investigation and design of a piezoelectric active vibration control system for vertical machining centres

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Nonlinear Time-Frequency Control Theory with Applications

    Get PDF
    Nonlinear control is an important subject drawing much attention. When a nonlinear system undergoes route-to-chaos, its response is naturally bounded in the time-domain while in the meantime becoming unstably broadband in the frequency-domain. Control scheme facilitated either in the time- or frequency-domain alone is insufficient in controlling route-to-chaos, where the corresponding response deteriorates in the time and frequency domains simultaneously. It is necessary to facilitate nonlinear control in both the time and frequency domains without obscuring or misinterpreting the true dynamics. The objective of the dissertation is to formulate a novel nonlinear control theory that addresses the fundamental characteristics inherent of all nonlinear systems undergoing route-to-chaos, one that requires no linearization or closed-form solution so that the genuine underlying features of the system being considered are preserved. The theory developed herein is able to identify the dynamic state of the system in real-time and restrain time-varying spectrum from becoming broadband. Applications of the theory are demonstrated using several engineering examples including the control of a non-stationary Duffing oscillator, a 1-DOF time-delayed milling model, a 2-DOF micro-milling system, unsynchronized chaotic circuits, and a friction-excited vibrating disk. Not subject to all the mathematical constraint conditions and assumptions upon which common nonlinear control theories are based and derived, the novel theory has its philosophical basis established in the simultaneous time-frequency control, on-line system identification, and feedforward adaptive control. It adopts multi-rate control, hence enabling control over nonstationary, nonlinear response with increasing bandwidth ? a physical condition oftentimes fails the contemporary control theories. The applicability of the theory to complex multi-input-multi-output (MIMO) systems without resorting to mathematical manipulation and extensive computation is demonstrated through the multi-variable control of a micro-milling system. The research is of a broad impact on the control of a wide range of nonlinear and chaotic systems. The implications of the nonlinear time-frequency control theory in cutting, micro-machining, communication security, and the mitigation of friction-induced vibrations are both significant and immediate
    corecore