1,153 research outputs found

    An automatically built named entity lexicon for Arabic

    Get PDF
    We have successfully adapted and extended the automatic Multilingual, Interoperable Named Entity Lexicon approach to Arabic, using Arabic WordNet (AWN) and Arabic Wikipedia (AWK). First, we extract AWN’s instantiable nouns and identify the corresponding categories and hyponym subcategories in AWK. Then, we exploit Wikipedia inter-lingual links to locate correspondences between articles in ten different languages in order to identify Named Entities (NEs). We apply keyword search on AWK abstracts to provide for Arabic articles that do not have a correspondence in any of the other languages. In addition, we perform a post-processing step to fetch further NEs from AWK not reachable through AWN. Finally, we investigate diacritization using matching with geonames databases, MADA-TOKAN tools and different heuristics for restoring vowel marks of Arabic NEs. Using this methodology, we have extracted approximately 45,000 Arabic NEs and built, to the best of our knowledge, the largest, most mature and well-structured Arabic NE lexical resource to date. We have stored and organised this lexicon following the Lexical Markup Framework (LMF) ISO standard. We conduct a quantitative and qualitative evaluation of the lexicon against a manually annotated gold standard and achieve precision scores from 95.83% (with 66.13% recall) to 99.31% (with 61.45% recall) according to different values of a threshold

    Arabic machine transliteration using an attention-based encoder-decoder model

    Get PDF
    Transliteration is the process of converting words from a given source language alphabet to a target language alphabet, in a way that best preserves the phonetic and orthographic aspects of the transliterated words. Even though an important effort has been made towards improving this process for many languages such as English, French and Chinese, little research work has been accomplished with regard to the Arabic language. In this work, an attention-based encoder-decoder system is proposed for the task of Machine Transliteration between the Arabic and English languages. Our experiments proved the efficiency of our proposal approach in comparison to some previous research developed in this area

    Arabic machine transliteration using an attention-based encoder-decoder model

    Get PDF
    Transliteration is the process of converting words from a given source language alphabet to a target language alphabet, in a way that best preserves the phonetic and orthographic aspects of the transliterated words. Even though an important effort has been made towards improving this process for many languages such as English, French and Chinese, little research work has been accomplished with regard to the Arabic language. In this work, an attention-based encoder-decoder system is proposed for the task of Machine Transliteration between the Arabic and English languages. Our experiments proved the efficiency of our proposal approach in comparison to some previous research developed in this area

    Arabic Information Retrieval: A Relevancy Assessment Survey

    Get PDF
    The paper presents a research in Arabic Information Retrieval (IR). It surveys the impact of statistical and morphological analysis of Arabic text in improving Arabic IR relevancy. We investigated the contributions of Stemming, Indexing, Query Expansion, Text Summarization (TS), Text Translation, and Named Entity Recognition (NER) in enhancing the relevancy of Arabic IR. Our survey emphasizing on the quantitative relevancy measurements provided in the surveyed publications. The paper shows that the researchers achieved significant enhancements especially in building accurate stemmers, with accuracy reaches 97%, and in measuring the impact of different indexing strategies. Query expansion and Text Translation showed positive relevancy effect. However, other tasks such as NER and TS still need more research to realize their impact on Arabic IR

    Bridge Correlational Neural Networks for Multilingual Multimodal Representation Learning

    Full text link
    Recently there has been a lot of interest in learning common representations for multiple views of data. Typically, such common representations are learned using a parallel corpus between the two views (say, 1M images and their English captions). In this work, we address a real-world scenario where no direct parallel data is available between two views of interest (say, V1V_1 and V2V_2) but parallel data is available between each of these views and a pivot view (V3V_3). We propose a model for learning a common representation for V1V_1, V2V_2 and V3V_3 using only the parallel data available between V1V3V_1V_3 and V2V3V_2V_3. The proposed model is generic and even works when there are nn views of interest and only one pivot view which acts as a bridge between them. There are two specific downstream applications that we focus on (i) transfer learning between languages L1L_1,L2L_2,...,LnL_n using a pivot language LL and (ii) cross modal access between images and a language L1L_1 using a pivot language L2L_2. Our model achieves state-of-the-art performance in multilingual document classification on the publicly available multilingual TED corpus and promising results in multilingual multimodal retrieval on a new dataset created and released as a part of this work.Comment: Published at NAACL-HLT 201

    ANETAC: Arabic named entity transliteration and classification dataset

    Get PDF
    In this paper, we make freely accessible ANETAC, our English-Arabic named entity transliteration and classification dataset that we built from freely available parallel translation corpora. The dataset contains 79, 924 instances, each instance is a triplet (e, a, c), where e is the English named entity, a is its Arabic transliteration and c is its class that can be either a Person, a Location, or an Organization. The ANETAC dataset is mainly aimed for the researchers that are working on Arabic named entity transliteration, but it can also be used for named entity classification purposes. This dataset was developed and used as part of a previous research study done by Hadj Ameur et al. [1]

    Are You Finding the Right Person? A Name Translation System Towards Web 2.0

    Get PDF
    In a multilingual world, information available in global information systems is increasing rapidly. Searching for proper names in foreign language becomes an important task in multilingual search and knowledge discovery. However, these names are the most difficult to handle because they are often unknown words that cannot be found in a translation dictionary and even human experts cannot handle the variation generated during translation. Furthermore, existing research on name translation have focused on translation algorithms. However, user experience during name translation and name search are often ignored. With the Web technology moving towards Web 2.0, creating a platform that allow easier distributed collaboration and information sharing, we seek methods to incorporate Web 2.0 technologies into a name translation system. In this research, we review challenges in name translation and propose an interactive name translation and search system: NameTran. This system takes English names and translates them into Chinese using a combined hybrid Hidden Markov Model-based (HMM-based) transliteration approach and a web mining approach. Evaluation results showed that web mining consistently boosted the performance of a pure HMM approach. Our system achieved top-1 accuracy of 0.64 and top-8 accuracy of 0.96. To cope with changing popularity and variation in name translations, we demonstrated the feasibility of allowing users to rank translations and the new ranking serves as feedback to the original trained HMM model. We believe that such user input will significantly improve system usability
    • …
    corecore