5,732 research outputs found

    Measure of combined effects of morphological parameters of inclusions within composite materials via stochastic homogenization to determine effective mechanical properties

    Full text link
    In our previous papers we have described efficient and reliable methods of generation of representative volume elements (RVE) perfectly suitable for analysis of composite materials via stochastic homogenization. In this paper we profit from these methods to analyze the influence of the morphology on the effective mechanical properties of the samples. More precisely, we study the dependence of main mechanical characteristics of a composite medium on various parameters of the mixture of inclusions composed of spheres and cylinders. On top of that we introduce various imperfections to inclusions and observe the evolution of effective properties related to that. The main computational approach used throughout the work is the FFT-based homogenization technique, validated however by comparison with the direct finite elements method. We give details on the features of the method and the validation campaign as well. Keywords: Composite materials, Cylindrical and spherical reinforcements, Mechanical properties, Stochastic homogenization.Comment: 23 pages, updated figures, version accepted to Composite Structures 201

    Developing DNS Tools to Study Channel Flow Over Realistic Plaque Morphology

    Get PDF
    In a normal coronary artery, the flow is laminar and the velocity is parabolic in nature. Over time, plaques deposit along the artery wall, narrowing the artery and creating an obstruction, a stenosis. As the stenosis grows, the characteristics of the flow change and transition occurs, resulting in turbulent flow distal to the stenosis. To date, direct numerical simulation (DNS) of turbulent flow has been performed in a number of studies to understand how stenosis modifies flow dynamics. However, the effect of the actual shape and size of the obstruction has been disregarded in these DNS studies. An ideal approach is to obtain geometrical information of the stenotic channel using medical imaging methods such as IVUS (Intravascular Ultrasound) and couple them with numerical solvers that simulate the flow in the stenotic channel. The purpose of the present thesis is to demonstrate the feasibility of coupling the IVUS geometry with DNS solver. This preliminary research will provide the necessary tools to achieve the long term goal of developing a framework for the morphological features of the stenosis on the flow modifications in a diseased coronary artery. In the present study, the geometrical information of the stenotic plaque has been provided by the medical imaging team at the Cleveland Clinic Foundation for 42 patients who underwent IVUS. The integration of the geometrical information of the stenotic plaque with the DNS was performed in 3 stages 1) fuzzy logic scheme was used to group the 42 patients into categories, 2) meshing algorithm was generated to interface with the DNS solver, and 3) the existing DNS for channel flow was modified to account for inhomogeneity in the streamwise direction. A plaque classification system was developed using statistical k-means clustering with fuzzy logic. Four distinct morphological categories were found in plaque measurements obtained from the 42 patients. Patients were then assigned a degree of membership to each category based on a fuzzy evaluation system. Flow simulations showed distinct turbulent flow characteristics when comparing the four categories, and similar characteristics within each category. An existing DNS solver that used the fourth-order velocity second-order vorticity formulation of the Navier-Stokes equations was modified to account for inhomogeneity in the streamwise direction. A multigrid method was implemented, using Green\u27s method to compute unknown boundary conditions at the walls in using an influence matrix approach. The inflow is the free stream laminar flow condition; the outflow is computed explicitly with a buffer domain and by parabolizing the Navier Stokes equation. The transitional flow solver was tested using blowing and suction disturbances at the wall to generate the Tollmien-Schlichting waves predicted by linear stability theory. The toolset developed as a part of this thesis demonstrates the feasibility of integrating realistic geometry with DNS. This tool can be used for patient-specific simulation of stenotic flow in coronary and carotid arteries. Additionally, within the field of fluid dynamics, this framework will contribute to the understanding of transition and turbulence in stenotic flows

    Micro-Macro relations for flow through random arrays of cylinders

    Get PDF
    The transverse permeability for creeping flow through unidirectional random arrays of fibers with various structures is revisited theoretically and numerically using the finite element method (FEM). The microstructure at various porosities has a strong effect on the transport properties, like permeability, of fibrous materials. We compare different microstructures (due to four random generator algorithms) as well as the effect of boundary conditions, finite size, homogeneity and isotropy of the structure on the macroscopic permeability of the fibrous medium. Permeability data for different minimal distances collapse when their minimal value is subtracted, which yields an empirical macroscopic permeability master function of porosity. Furthermore, as main result, a microstructural model is developed based on the lubrication effect in the narrow channels between neighboring fibers. The numerical experiments suggest a unique, scaling power law relationship between the permeability obtained from fluid flow simulations and the mean value of the shortest Delaunay triangulation edges (constructed using the centers of the fibers), which is identical to the averaged second nearest neighbor fiber distances. This universal lubrication relation, as valid in a wide range of porosities, accounts for the microstructure, e.g. hexagonally ordered or disordered fibrous media. It is complemented by a closure relation that relates the effective microscopic length to the packing fraction

    Analytical Modeling of Metal Gate Granularity based Threshold Voltage Variability in NWFET

    Full text link
    Estimation of threshold voltage V T variability for NWFETs has been compu- tationally expensive due to lack of analytical models. Variability estimation of NWFET is essential to design the next generation logic circuits. Compared to any other process induced variabilities, Metal Gate Granularity (MGG) is of paramount importance due to its large impact on V T variability. Here, an analytical model is proposed to estimate V T variability caused by MGG. We extend our earlier FinFET based MGG model to a cylindrical NWFET by sat- isfying three additional requirements. First, the gate dielectric layer is replaced by Silicon of electro-statically equivalent thickness using long cylinder approxi- mation; Second, metal grains in NWFETs satisfy periodic boundary condition in azimuthal direction; Third, electrostatics is analytically solved in cylindri- cal polar coordinates with gate boundary condition defined by MGG. We show that quantum effects only shift the mean of the V T distribution without sig- nificant impact on the variability estimated by our electrostatics-based model. The V T distribution estimated by our model matches TCAD simulations. The model quantitatively captures grain size dependence with {\sigma}(V T ) with excellent accuracy (6%error) compared to stochastic 3D TCAD simulations, which is a significant improvement over the state-of- the-art model with fails to produce even a qualitative agreement. The proposed model is 63 times faster compared to commercial TCAD simulations

    Micromechanical modeling of the elastic behavior of unidirectional CVI SiC/SiC composites

    Get PDF
    International audienceThe elastic behavior of SiC/SiC composite is investigated at the scale of the tow through a micromechanical modeling taking into account the heterogeneous nature of the microstructure. The paper focuses on the sensitivity of transverse properties to the residual porosity resulting from the matrix infiltration process. The full analysis is presented stepwise, starting from the microstructural characterization to the study of the impact of pore shape and volume fraction. Various Volume Elements (VEs) of a virtual microstructure are randomly generated. Their microstructural properties are validated with respect to an experimental characterization based on high definition SEM observations of real materials, using various statistical descriptors. The linear elastic homogenization is performed using finite elements calculations for several VE sizes and boundary conditions. Important fluctuations of the apparent behavior, even for large VEs, reveal that scales are not separated. Nevertheless, a homogeneous equivalent behavior is estimated by averaging apparent behaviors of several VEs smaller than the Representative Volume Element (RVE). Therefore, the impact of the irregular shape of the pores on the overall properties is highlighted by comparison to a simpler cylindrical porous microstructure. Finally, different matrix infiltration qualities are simulated by several matrix thicknesses. A small increase in porosity volume fraction is shown to potentially lead to an important fall of transverse elastic moduli together with high stress concentrations

    Investigation of strain measurements in (curved) wide plate specimens using digital image correlation and finite element analysis

    Get PDF
    Some pipelines face global plastic straining due to the nature of their installation process or harsh environmental conditions during operation. The ability of the girth welds to withstand these plastic strains is often evaluated on the basis of wide plate tests. Key for the validity of these tests is a representative measurement of remote strain, mostly obtained by linear variable differential transformers and/or strain gauges. The outcome of the remote strain measurement depends on the specimen geometry and the position of these sensors. In an attempt to investigate a specific geometric design of wide plate specimens and to find appropriate remote strain sensor positions, the authors have performed a series of tension tests on medium-sized wide plate specimens, supported by digital image correlation strain measurements. In addition, finite element simulations have been performed to evaluate whether the experimental observations can be extrapolated to a wider range of conditions. The results indicate that the strain distribution is mostly influenced by the weld strength mismatch, which governs the lateral restraint. For all experiments and simulations, nevertheless, the strain field was highly uniform in an identified zone, resulting in simple guidelines regarding specimen geometry and sensor positioning
    corecore