57,412 research outputs found

    The development of local solar irradiance for outdoor computer graphics rendering

    Get PDF
    Atmospheric effects are approximated by solving the light transfer equation, LTE, of a given viewing path. The resulting accumulated spectral energy (its visible band) arriving at the observer’s eyes, defines the colour of the object currently on the line of sight. Due to the convenience of using a single rendering equation to solve the LTE for daylight sky and distant objects (aerial perspective), recent methods had opt for a similar kind of approach. Alas, the burden that the real-time calculation brings to the foil had forced these methods to make simplifications that were not in line with the actual world observation. Consequently, the results of these methods are laden with visual-errors. The two most common simplifications made were: i) assuming the atmosphere as a full-scattering medium only and ii) assuming a single density atmosphere profile. This research explored the possibility of replacing the real-time calculation involved in solving the LTE with an analytical-based approach. Hence, the two simplifications made by the previous real-time methods can be avoided. The model was implemented on top of a flight simulator prototype system since the requirements of such system match the objectives of this study. Results were verified against the actual images of the daylight skies. Comparison was also made with the previous methods’ results to showcase the proposed model strengths and advantages over its peers

    Adaptive Filtering Enhances Information Transmission in Visual Cortex

    Full text link
    Sensory neuroscience seeks to understand how the brain encodes natural environments. However, neural coding has largely been studied using simplified stimuli. In order to assess whether the brain's coding strategy depend on the stimulus ensemble, we apply a new information-theoretic method that allows unbiased calculation of neural filters (receptive fields) from responses to natural scenes or other complex signals with strong multipoint correlations. In the cat primary visual cortex we compare responses to natural inputs with those to noise inputs matched for luminance and contrast. We find that neural filters adaptively change with the input ensemble so as to increase the information carried by the neural response about the filtered stimulus. Adaptation affects the spatial frequency composition of the filter, enhancing sensitivity to under-represented frequencies in agreement with optimal encoding arguments. Adaptation occurs over 40 s to many minutes, longer than most previously reported forms of adaptation.Comment: 20 pages, 11 figures, includes supplementary informatio

    Functional design for operational earth resources ground data processing

    Get PDF
    The author has identified the following significant results. Study emphasis was on developing a unified concept for the required ground system, capable of handling data from all viable acquisition platforms and sensor groupings envisaged as supporting operational earth survey programs. The platforms considered include both manned and unmanned spacecraft in near earth orbit, and continued use of low and high altitude aircraft. The sensor systems include both imaging and nonimaging devices, operated both passively and actively, from the ultraviolet to the microwave regions of the electromagnetic spectrum

    A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam

    Get PDF
    A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. Using data sets of 6.6e20 protons on target (P.O.T.) in the LAr1-ND and ICARUS T600 detectors plus 13.2e20 P.O.T. in the MicroBooNE detector, we estimate that a search for muon neutrino to electron neutrino appearance can be performed with ~5 sigma sensitivity for the LSND allowed (99% C.L.) parameter region. In this proposal for the SBN Program, we describe the physics analysis, the conceptual design of the LAr1-ND detector, the design and refurbishment of the T600 detector, the necessary infrastructure required to execute the program, and a possible reconfiguration of the BNB target and horn system to improve its performance for oscillation searches.Comment: 209 pages, 129 figure
    • …
    corecore