1,827 research outputs found

    On Stein's Identity and Near-Optimal Estimation in High-dimensional Index Models

    Full text link
    We consider estimating the parametric components of semi-parametric multiple index models in a high-dimensional and non-Gaussian setting. Such models form a rich class of non-linear models with applications to signal processing, machine learning and statistics. Our estimators leverage the score function based first and second-order Stein's identities and do not require the covariates to satisfy Gaussian or elliptical symmetry assumptions common in the literature. Moreover, to handle score functions and responses that are heavy-tailed, our estimators are constructed via carefully thresholding their empirical counterparts. We show that our estimator achieves near-optimal statistical rate of convergence in several settings. We supplement our theoretical results via simulation experiments that confirm the theory

    Non-convex Optimization for Machine Learning

    Full text link
    A vast majority of machine learning algorithms train their models and perform inference by solving optimization problems. In order to capture the learning and prediction problems accurately, structural constraints such as sparsity or low rank are frequently imposed or else the objective itself is designed to be a non-convex function. This is especially true of algorithms that operate in high-dimensional spaces or that train non-linear models such as tensor models and deep networks. The freedom to express the learning problem as a non-convex optimization problem gives immense modeling power to the algorithm designer, but often such problems are NP-hard to solve. A popular workaround to this has been to relax non-convex problems to convex ones and use traditional methods to solve the (convex) relaxed optimization problems. However this approach may be lossy and nevertheless presents significant challenges for large scale optimization. On the other hand, direct approaches to non-convex optimization have met with resounding success in several domains and remain the methods of choice for the practitioner, as they frequently outperform relaxation-based techniques - popular heuristics include projected gradient descent and alternating minimization. However, these are often poorly understood in terms of their convergence and other properties. This monograph presents a selection of recent advances that bridge a long-standing gap in our understanding of these heuristics. The monograph will lead the reader through several widely used non-convex optimization techniques, as well as applications thereof. The goal of this monograph is to both, introduce the rich literature in this area, as well as equip the reader with the tools and techniques needed to analyze these simple procedures for non-convex problems.Comment: The official publication is available from now publishers via http://dx.doi.org/10.1561/220000005

    Tensor Computation: A New Framework for High-Dimensional Problems in EDA

    Get PDF
    Many critical EDA problems suffer from the curse of dimensionality, i.e. the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g. 3-D field solvers discretizations and multi-rate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g. full-chip routing/placement and circuit sizing), or extensive process variations (e.g. variability/reliability analysis and design for manufacturability). The computational challenges generated by such high dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.Comment: 14 figures. Accepted by IEEE Trans. CAD of Integrated Circuits and System
    • …
    corecore