13,792 research outputs found

    Countermovement jump and squat jump force-time curve analysis in control and fatigue conditions

    Get PDF
    This study aimed to reanalyze previously published discrete force data from countermovement jumps (CMJs) and squat jumps (SJs) using statistical parametric mapping (SPM), a statistical method that enables analysis of data in its native, complete state. Statistical parametric mapping analysis of 1-dimensional (1D) force-time curves was compared with previous zero-dimensional (0D) analysis of peak force to assess sensitivity of 1D analysis. Thirty-two subjects completed CMJs and SJs at baseline, 15 minutes, 1, 24, and 48 hours following fatigue and control conditions in a pseudo random cross-over design. Absolute (CMJABS/SJABS) and time-normalized (CMJNORM/SJNORM) force-time data were analyzed using SPM 2-way repeated measures analysis of variance with significance accepted at α = 0.05. The SPM indicated a magnitude of difference between force-time data with main effects for time (p \u3c 0.001) and interaction (p \u3c 0.001) observed in CMJABS, SJABS, and SJNORM, whereas previously published 0D analysis reported no 2-way interaction in CMJ and SJ peak force. This exploratory research demonstrates the strength of SPM to identify changes between entire movement force-time curves. Continued development and use of SPM analysis techniques could present the opportunity for refined assessment of athlete fatigue and readiness with the analysis of complete force-time curves

    A force profile analysis comparison between functional data analysis, statistical parametric mapping and statistical non-parametric mapping in on-water single sculling

    Get PDF
    Objectives: To examine whether the Functional Data Analysis (FDA), Statistical Parametric Mapping (SPM) and Statistical non-Parametric Mapping (SnPM) hypothesis testing techniques differ in their ability to draw inferences in the context of a single, simple experimental design. Design: The sample data used is cross-sectional (two-sample gender comparison) and evaluation of differences between statistical techniques used a combination of descriptive and qualitative assessments. Methods: FDA, SPM and SnPM t-tests were applied to sample data of twenty highly skilled male and female rowers, rowing at 32 strokes per minute in a single scull boat. Statistical differences for gender were assessed by applying two t-tests (one for each side of the boat). Results: The t-statistic values were identical for all three methods (with the FDA t-statistic presented as an absolute measure). The critical t-statistics (tcrit) were very similar between the techniques, with SPM tcrit providing a marginally higher tcrit than the FDA and SnPM tcrit values (which were identical). All techniques were successful in identifying consistent sections of the force waveform, where male and female rowers were shown to differ significantly (p < 0.05). Conclusions: This is the first study to show that FDA, SPM and SnPM t-tests provide consistent results when applied to sports biomechanics data. Though the results were similar, selection of one technique over another by applied researchers and practitioners should be based on the underlying parametric assumption of SPM, as well as contextual factors related to the type of waveform data to be analysed and the experimental research question of interest

    Wavelet-based methodology for [15O]-H20 PET brain activation assessment

    Get PDF
    [Abstract] AMI International Conference 2003, September 21-27, Madrid, Spain: "High Resolution Molecular Imaging: from Basic Science to Clinical Applications"Statistical parametric mapping (SPM) is a voxel-byvoxel analysis method commonly used for the detection of brain activation patterns. An alternative approach is the use of multiscale information by means of wavelet analysis. In this study, we have compared the detection of brain activations using conventional SPM and a statistical wavelet analysis in a set of realistic simulated [15O]-H20 positron emission tomography (PET) phantomsPublicad

    Toolbox for enhanced fMRI activation mapping using anatomically adapted graph wavelets

    Get PDF
    In fMRI studies with evoked activity, brain activity is detected by voxel-wise GLM tting, followed by statistical hypothesis testing. Statistical parametric mapping (SPM), one of the most popular classical methods, relies upon Gaussian smoothing to deal with the multiple-comparison correction. As an alternative, we have recently introduced a graph-based framework for fMRI brain activation mapping (Behjat, et al., 2015). The graph is designed such that it encodes the topological structure of the gray matter (GM). The approach exploits the spectral graph wavelet transform for the purpose of defining an advanced multi-scale spatial transformation for fMRI data. The use of spatial wavelet transforms has the benefit of providing a compact representation of activation patterns. The framework extends wavelet-based SPM (WSPM), which is a framework that combines wavelet processing of non-smoothed data with voxel-wise statistical testing while guaranteeing strong FP control. Here, we present an implementation of the proposed framework as a user-friendly, SPM-compatible toolbox that deals with multi-subject studies

    Functional Optical Topography Analysis Using Statistical Parametric Mapping (SPM) Methodology with and without Physiological Confounds

    Get PDF
    Functional optical topography (OT) measures the changes in oxygenated and deoxygenated hemoglobin (HbO(2), HHb) across multiple brain sites which occur in response to neuronal activation of the cerebral cortex. However, identification of areas of cortical activation is a complex task due to intrinsic physiological noise and systemic interference and careful statistical analysis is therefore required. A total of 10 young healthy adults were studied. The activation paradigm comprised of anagrams followed by finger tapping. 12 channels of the OT system were positioned over the frontal cortex and 12 channels over the motor cortex while the systemic physiology (mean blood pressure (MBP), heart rate (HR), scalp flux) was simultaneously monitored. Analysis was done using the functional Optical Signal Analysis (fOSA) software and Statistical Parametric Mapping (SPM), where we utilized two approaches: (i) using only HbO(2) as a regressor in the general linear model (GLM) and (ii) using all of the explanatory variables (HbO(2), MBP, HR and scalp flux) as regressors. Group analysis using SPM showed significant correlation in a large number of OT channels between HbO(2) and systemic regressors; however no differences in activation areas were seen between the two approaches

    Epileptogenic zone localization with (18)FDG PET using a new dynamic parametric analysis

    Get PDF
    Introduction: [18F]fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) is part of the regular preoperative work-up in medically refractory epilepsy. As a complement to visual evaluation of PET, statistical parametric maps can help in the detection of the epileptogenic zone (EZ). However, software packages currently available are time-consuming and little intuitive for physicians. We develop a user-friendly software (referred as PET-analysis) for EZ localization in PET studies that allows dynamic real-time statistical parametric analysis. To evaluate its performance, the outcome of PET-analysis was compared with the results obtained by visual assessment and Statistical Parametric Mapping (SPM). Methods: Thirty patients with medically refractory epilepsy who underwent presurgical 18F-FDG PET with good post-operative outcomes were included. The 18F-FDG PET studies were evaluated by visual assessment, with SPM8 and PET-analysis. In SPM, parametric T-maps were thresholded at corrected p < 0.05 and cluster size k = 50 and at uncorrected p < 0.001 and k = 100 (the most used parameters in the literature). Since PET-analysis rapidly processes different threshold combinations, T-maps were thresholded with multiple p-value and different clusters sizes. The presurgical EZ identified by visual assessment, SPM and PET-analysis was compared to the confirmed EZ according to post-surgical follow-up. Results: PET-analysis obtained 66.7% (20/30) of correctly localizing studies, comparable to the 70.0% (21/30) achieved by visual assessment and significantly higher (p < 0.05) than that obtained with the SPM threshold p < 0.001/k = 100, of 36.7% (11/30). Only one study was positive, albeit non-localizing, with the SPM threshold corrected p < 0.05/k = 50. Concordance was substantial for PET-analysis (κ = 0.643) and visual interpretation (κ = 0.622), being fair for SPM (κ = 0.242). Conclusion: Compared to SPM with the fixed standard parameters, PET-analysis may be superior in EZ localization with its easy and rapid processing of different threshold combinations. The results of this initial proof-of-concept study validate the clinical use of PET-analysis as a robust objective complementary tool to visual assessment for EZ localization

    Cortical neuronal loss and hippocampal sclerosis are not detected by voxel-based morphometry in individual epilepsy surgery patients

    Get PDF
    Voxel-based morphometry (VBM) has detected differences between brains of groups of patients with epilepsy and controls, but the sensitivity for detecting subtle pathological changes in single subjects has not been established. The aim of the study was to test the sensitivity of VBM using statistical parametric mapping (SPM5) to detect hippocampal sclerosis (HS) and cortical neuronal loss in individual patients. T1-weighted volumetric 1.5 T MR images from 13 patients with HS and laminar cortical neuronal loss were segmented, normalised and smoothed using SPM5. Both modulated and non-modulated analyses were performed. Comparisons of one control subject against the rest (n ¼ 23) were first performed to ascertain the smoothing level with the lowest number of SPM changes in controls. Each patient was then compared against the whole control group. The lowest number of SPM changes in control subjects was found at a smoothing level of 10 mm full width half maximum for modulated and non-modulated data. In the patient group, no SPM abnormalities were found in the affected temporal lobe or hippocampus at this smoothing level. At lower smoothing levels there were numerous SPM findings in controls and patients. VBM did not detect any abnormalities associated with either laminar cortical neuronal loss or HS. This may be due to normalisation and smoothing of images and low statistical power in areas with larger interindividual differences. This suggests that the methodology may currently not be suitable to detect particular occult abnormalities possibly associated with seizure onset zone in individual epilepsy patients with unremarkable standard structural MRI

    A New Statistical Image Analysis Approach and Its Application to Hippocampal Morphometry

    Get PDF
    In this work, we propose a novel and powerful image analysis framework for hippocampal morphometry in early mild cognitive impairment (EMCI), an early prodromal stage of Alzheimer’s disease (AD). We create a hippocampal surface atlas with subfield information, model each hippocampus using the SPHARM technique, and register it to the atlas to extract surface deformation signals. We propose a new alternative to standard random field theory (RFT) and permutation image analysis methods, Statistical Parametric Mapping (SPM) Distribution Analysis or SPM-DA, to perform statistical shape analysis and compare its performance with that of RFT methods on both simulated and real hippocampal surface data. The major strengths of our framework are twofold: (a) SPM-DA provides potentially more powerful algorithms than standard RFT methods for detecting weak signals, and (b) the framework embraces the important hippocampal subfield information for improved biological interpretation. We demonstrate the effectiveness of our method via an application to an AD cohort, where an SPM-DA method detects meaningful hippocampal shape differences in EMCI that are undetected by standard RFT methods

    Esquemas de registro para alinear imágenes del cerebro

    Get PDF
    In this paper, the results obtained by the registration process of brain image volumes obtained by magnetic resonance imaging (MRI) and functional magnetic resonance imaging (MRI) using two different computational frameworks are presented. The objective is to compare the performance of each framework, focusing this comparison in the error measurement obtained by brain volumes registration. The comparison involves the intra patient and intra modality (MRI-MRI and fMRI-fMRI) registration. Statistical Parametric Mapping (SPM) and Insight Segmentation and Registration Toolkit (ITK) are chosen as registration frameworks. The proposed methodology considers the data sets generation, test planning, designing test cases, tests execution and evaluating. Finally, these results are analysed. The correspondence between the volumes registered and the target volume using the ITK framework is greater than that obtained with the SPM framework.En este artículo, se presentan los resultados obtenidos por el proceso de registro de los volúmenes de imágenes cerebrales obtenidos por resonancia magnética (MRI) y resonancia magnética funcional (fMRI) utilizando dos marcos computacionales diferentes. El objetivo es comparar el rendimiento de cada marco, enfocando esta comparación en la medición de error obtenida por el registro de volúmenes cerebrales. La comparación involucra el registro intramodal e intramodalidad (MRI-MRI y fMRI-fMRI). El Statistical Parametric Mapping (SPM) y el Insight Segmentation and Registration Toolkit (ITK) se eligen como marcos de registro. La metodología propuesta considera la generación de conjuntos de datos, planificación de pruebas, diseño de casos de prueba, ejecución de pruebas y evaluación. Finalmente, estos resultados son analizados. La correspondencia entre los volúmenes registrados y el volumen objetivo usando el marco ITK es mayor que la obtenida con el marco SPM
    corecore