2,842 research outputs found

    PLC for the smart grid: state-of-the-art and challenges

    Get PDF
    This paper aims to review systems and applications for power line communications (PLC) in the context of the smart grid. We discuss the main applications and summarise state-of-the-art PLC systems and standards. We report efforts and challenges in channel and noise modelling, as well as in state-of-the-art transmission technology approaches

    A fitting algorithm for random modeling the PLC channel

    Get PDF
    The characteristics of the power-line communication (PLC) channel are difficult to model due to the heterogeneity of the networks and the lack of common wiring practices. To obtain the full variability of the PLC channel, random channel generators are of great importance for the design and testing of communication algorithms. In this respect, we propose a random channel generator that is based on the top-down approach. Basically, we describe the multipath propagation and the coupling effects with an analytical model. We introduce the variability into a restricted set of parameters and, finally, we fit the model to a set of measured channels. The proposed model enables a closed-form description of both the mean path-loss profile and the statistical correlation function of the channel frequency response. As an example of application, we apply the procedure to a set of in-home measured channels in the band 2-100 MHz whose statistics are available in the literature. The measured channels are divided into nine classes according to their channel capacity. We provide the parameters for the random generation of channels for all nine classes, and we show that the results are consistent with the experimental ones. Finally, we merge the classes to capture the entire heterogeneity of in-home PLC channels. In detail, we introduce the class occurrence probability, and we present a random channel generator that targets the ensemble of all nine classes. The statistics of the composite set of channels are also studied, and they are compared to the results of experimental measurement campaigns in the literature

    Analysis of power line communications for last-hop backhaul in small cells deployment

    Get PDF
    Publicado en: :(2019-04-05),(José A. Cortes, Francisco J. Cañete, Matías Toril, Luis Díez, Alicia García-Mozos, "Analysis of power line communications for last-hop backhaul in small cells deployment", in Proceedings of the IEEE International Symposium on Power Line Communications and its Applications, 2019.),yEditor(IEEE)The purpose of this work is to study the feasibility of using power line communications (PLC) over outdoor public lighting networks (OPLN) for last-hop backhaul in small cell deployment. The analysis is based on actual noise measurements performed in two OPLN in the city of Málaga (Spain) and on a bottom-up channel simulator, which has been designed according to the physical characteristics and the common practices in such kind of networks. Estimations of the bit-rate achieved by PLC systems following the ITU-T Rec. G.9960 (G.hn) standard, are performed and discussed. Results indicate that PLC is a promising solution for this application.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    State-of-the-art in Power Line Communications: from the Applications to the Medium

    Get PDF
    In recent decades, power line communication has attracted considerable attention from the research community and industry, as well as from regulatory and standardization bodies. In this article we provide an overview of both narrowband and broadband systems, covering potential applications, regulatory and standardization efforts and recent research advancements in channel characterization, physical layer performance, medium access and higher layer specifications and evaluations. We also identify areas of current and further study that will enable the continued success of power line communication technology.Comment: 19 pages, 12 figures. Accepted for publication, IEEE Journal on Selected Areas in Communications. Special Issue on Power Line Communications and its Integration with the Networking Ecosystem. 201

    Characterisation of Signal Amplitude-Frequency for Indoor Power Line Communication Channel in the 1 — 30 MHz Broadband Frequencies

    Get PDF
    The transmission of data signals over power lines is a very promising technique for delivering indoor broadband communication services. However, since power grids were originally designed for high-voltage low-frequency signal transmission, there is a frequency mismatch between the power grid and high-frequency data signals. This mismatch poses a challenge to deploying power lines as a communication channel. Although, studies and researches conducted in several countries have made transmission of data over power lines possible, the behaviour and properties of the power grid cannot be generalised. Hence, the need for in-depth experiment and measurement on the suitability and capability of the Nigerian power grid for data transmission is crucial for proper characterising and modelling of the power line communication (PLC) channel. In this paper, we present experimental measurements and results of the effects of frequency variations on the attenuation experienced by broadband high-speed data signals transmitted over the Nigerian indoor power line network

    Statistical Characterization of Indian Residential Networks for Powerline Communication

    Get PDF
    Despite different powerline channel modeling techniques, developed so far, there are still specific dynamic, varying parameters (viz. the random load variation and inconsistent electrical wiring) to be studied for a valid and reliable power line communication (PLC) model. Statistical characterization of PLC channel may provide the required background for refinement of these existent models. In this paper, the Indian residential networks are statistically analyzed in the frequency range of 1-100 MHz. This also includes the comprehensive analysis of line impedance, stationary noise, channel capacity and average channel gain. From the measurements, the noise spectrum density is found to be less than -90 dBm at a frequency less than 1 MHz and is almost constant after 70 MHz. The minimum and maximum channel capacity of the network is 71.5 Mbps and 97.7 Mbps respectively. The Average channel gain is estimated at -30 dB. The paper also reviews the channel transfer function developed by top-down and bottom-top approaches.  Finally, some additional factors influencing the PLC channel are also discussed
    • …
    corecore