48,750 research outputs found

    Functional Regression

    Full text link
    Functional data analysis (FDA) involves the analysis of data whose ideal units of observation are functions defined on some continuous domain, and the observed data consist of a sample of functions taken from some population, sampled on a discrete grid. Ramsay and Silverman's 1997 textbook sparked the development of this field, which has accelerated in the past 10 years to become one of the fastest growing areas of statistics, fueled by the growing number of applications yielding this type of data. One unique characteristic of FDA is the need to combine information both across and within functions, which Ramsay and Silverman called replication and regularization, respectively. This article will focus on functional regression, the area of FDA that has received the most attention in applications and methodological development. First will be an introduction to basis functions, key building blocks for regularization in functional regression methods, followed by an overview of functional regression methods, split into three types: [1] functional predictor regression (scalar-on-function), [2] functional response regression (function-on-scalar) and [3] function-on-function regression. For each, the role of replication and regularization will be discussed and the methodological development described in a roughly chronological manner, at times deviating from the historical timeline to group together similar methods. The primary focus is on modeling and methodology, highlighting the modeling structures that have been developed and the various regularization approaches employed. At the end is a brief discussion describing potential areas of future development in this field

    Large-sample estimation and inference in multivariate single-index models

    Get PDF
    By optimizing index functions against different outcomes, we propose a multivariate single-index model (SIM) for development of medical indices that simultaneously work with multiple outcomes. Fitting of a multivariate SIM is not fundamentally different from fitting a univariate SIM, as the former can be written as a sum of multiple univariate SIMs with appropriate indicator functions. What have not been carefully studied are the theoretical properties of the parameter estimators. Because of the lack of asymptotic results, no formal inference procedure has been made available for multivariate SIMs. In this paper, we examine the asymptotic properties of the multivariate SIM parameter estimators. We show that, under mild regularity conditions, estimators for the multivariate SIM parameters are indee

    Efficient estimation of a semiparametric partially linear varying coefficient model

    Get PDF
    In this paper we propose a general series method to estimate a semiparametric partially linear varying coefficient model. We establish the consistency and \sqrtn-normality property of the estimator of the finite-dimensional parameters of the model. We further show that, when the error is conditionally homoskedastic, this estimator is semiparametrically efficient in the sense that the inverse of the asymptotic variance of the estimator of the finite-dimensional parameter reaches the semiparametric efficiency bound of this model. A small-scale simulation is reported to examine the finite sample performance of the proposed estimator, and an empirical application is presented to illustrate the usefulness of the proposed method in practice. We also discuss how to obtain an efficient estimation result when the error is conditional heteroskedastic.Comment: Published at http://dx.doi.org/10.1214/009053604000000931 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore