31 research outputs found

    Neuronal correlates of decisions to speak and act: Spontaneous emergence and dynamic topographies in a computational model of frontal and temporal areas

    Get PDF
    The neural mechanisms underlying the spontaneous, stimulus-independent emergence of intentions and decisions to act are poorly understood. Using a neurobiologically realistic model of frontal and temporal areas of the brain, we simulated the learning of perception–action circuits for speech and hand-related actions and subsequently observed their spontaneous behaviour. Noise-driven accumulation of reverberant activity in these circuits leads to their spontaneous ignition and partial-to-full activation, which we interpret, respectively, as model correlates of action intention emergence and action decision-and-execution. Importantly, activity emerged first in higher-association prefrontal and temporal cortices, subsequently spreading to secondary and finally primary sensorimotor model-areas, hence reproducing the dynamics of cortical correlates of voluntary action revealed by readiness-potential and verb-generation experiments. This model for the first time explains the cortical origins and topography of endogenous action decisions, and the natural emergence of functional specialisation in the cortex, as mechanistic consequences of neurobiological principles, anatomical structure and sensorimotor experience

    Visual cortex recruitment during language processing in blind individuals is explained by Hebbian learning

    Get PDF
    In blind people, the visual cortex takes on higher cognitive functions, including language. Why this functional organisation mechanistically emerges at the neuronal circuit level is still unclear. Here, we use a biologically constrained network model implementing features of anatomical structure, neurophysiological function and connectivity of fronto-temporal-occipital areas to simulate word-meaning acquisition in visually deprived and undeprived brains. We observed that, only under visual deprivation, distributed word-related neural circuits ‘grew into’ the deprived visual areas, which therefore adopted a linguistic-semantic role. Three factors are crucial for explaining this deprivation-related growth: changes in the network’s activity balance brought about by the absence of uncorrelated sensory input, the connectivity structure of the network, and Hebbian correlation learning. In addition, the blind model revealed long-lasting spiking neural activity compared to the sighted model during word recognition, which is a neural correlate of enhanced verbal working memory. The present neurocomputational model offers a neurobiological account for neural changes followed by sensory deprivation, thus closing the gap between cellular-level mechanisms, system-level linguistic and semantic function

    Understanding language and attention: brain-based model and neurophysiological experiments

    Get PDF
    This work concerns the investigation of the neuronal mechanisms at the basis of language acquisition and processing, and the complex interactions of language and attention processes in the human brain. In particular, this research was motivated by two sets of existing neurophysiological data which cannot be reconciled on the basis of current psycholinguistic accounts: on the one hand, the N400, a robust index of lexico-semantic processing which emerges at around 400ms after stimulus onset in attention demanding tasks and is larger for senseless materials (meaningless pseudowords) than for matched meaningful stimuli (words); on the other, the more recent results on the Mismatch Negativity (MMN, latency 100-250ms), an early automatic brain response elicited under distraction which is larger to words than to pseudowords. We asked what the mechanisms underlying these differential neurophysiological responses may be, and whether attention and language processes could interact so as to produce the observed brain responses, having opposite magnitude and different latencies. We also asked questions about the functional nature and anatomical characteristics of the cortical representation of linguistic elements. These questions were addressed by combining neurocomputational techniques and neuroimaging (magneto-encephalography, MEG) experimental methods. Firstly, a neurobiologically realistic neural-network model composed of neuron-like elements (graded response units) was implemented, which closely replicates the neuroanatomical and connectivity features of the main areas of the left perisylvian cortex involved in spoken language processing (i.e., the areas controlling speech output – left inferior-prefrontal cortex, including Broca’s area – and the main sensory input – auditory – areas, located in the left superior-temporal lobe, including Wernicke’s area). Secondly, the model was used to simulate early word acquisition processes by means of a Hebbian correlation learning rule (which reflects known synaptic plasticity mechanisms of the neocortex). The network was “taught” to associate pairs of auditory and articulatory activation patterns, simulating activity due to perception and production of the same speech sound: as a result, neuronal word representations distributed over the different cortical areas of the model emerged. Thirdly, the network was stimulated, in its “auditory cortex”, with either one of the words it had learned, or new, unfamiliar pseudoword patterns, while the availability of attentional resources was modulated by changing the level of non-specific, global cortical inhibition. In this way, the model was able to replicate both the MMN and N400 brain responses by means of a single set of neuroscientifically grounded principles, providing the first mechanistic account, at the cortical-circuit level, for these data. Finally, in order to verify the neurophysiological validity of the model, its crucial predictions were tested in a novel MEG experiment investigating how attention processes modulate event-related brain responses to speech stimuli. Neurophysiological responses to the same words and pseudowords were recorded while the same subjects were asked to attend to the spoken input or ignore it. The experimental results confirmed the model’s predictions; in particular, profound variability of magnetic brain responses to pseudowords but relative stability of activation to words as a function of attention emerged. While the results of the simulations demonstrated that distributed cortical representations for words can spontaneously emerge in the cortex as a result of neuroanatomical structure and synaptic plasticity, the experimental results confirm the validity of the model and provide evidence in support of the existence of such memory circuits in the brain. This work is a first step towards a mechanistic account of cognition in which the basic atoms of cognitive processing (e.g., words, objects, faces) are represented in the brain as discrete and distributed action-perception networks that behave as closed, independent systems

    Theta oscillations, timing and cholinergic modulation in the rodent hippocampal circuit

    Full text link
    The medial temporal lobe (MTL) is crucial for episodic and spatial memory, and shows rhythmicity in the local field potential and neuronal spiking. Gamma oscillations (>40Hz) are mediatepd by local circuitry and interact with slower theta oscillations (6-10 Hz). Both oscillation frequencies are modulated by cholinergic input from the medial septum. Entorhinal grid cells fire when an animal visits particular locations in the environment arranged on the corners of tightly packed, equilateral triangles. Grid cells show phase precession, in which neurons fire at progressively earlier phases relative to theta oscillation as animals move through firing fields. This work focuses on the temporal organization of spiking and network rhythms, and their modulation by septal inputs, which are thought to be involved in MTL function. First, I recorded grid cells as rats explored open spaces and examined precession, previously only characterized on linear tracks, and compared it to predictions from models. I identified precession, including in conjunctive head-direction-by-grid cells and on passes that clipped the edge of the firing field. Secondly, I studied problems of measuring single neuron theta rhythmicity and developed an improved approach. Using the novel approach, I identified diverse modulation of rat medial entorhinal neurons’ rhythmic frequencies by running speed, independent from the modulation of firing rate by speed. Under pharmacological inactivation of the septum, rhythmic tuning was disrupted while rate tuning was enhanced. The approach also showed that available data is insufficient to prove that bat grid cells are arrhythmic due to low firing rates. In the final project, I optogenetically silenced cholinergic septal cells while recording from hippocampal area CA1. I identified changes in theta rhythmic currents and in theta-gamma coupling. This silencing disrupted performance when applied during the encoding phase of a delayed match to position task. These data support hypothetical roles of these rhythms in encoding and retrieval and suggest possible mechanisms for their modulation. Together, evidence from these projects suggests a role for theta in the function of spatial and episodic memory. These oscillations have important implications for communication and computation, and they can provide a substrate for efficient brain function

    Invariant Visual Object and Face Recognition: Neural and Computational Bases, and a Model, VisNet

    Get PDF
    Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy model in which invariant representations can be built by self-organizing learning based on the temporal and spatial statistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associative synaptic learning rule with a short-term memory trace, and/or it can use spatial continuity in continuous spatial transformation learning which does not require a temporal trace. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in, for example, spatial and object search tasks. The approach has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene. The approach has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus
    corecore