269 research outputs found

    Statistical group differences in anatomical shape analysis using Hotelling T2 Metric

    Get PDF
    journal articleShape analysis has become of increasing interest to the neuroimaging community due to its potential to precisely locate morphological changes between healthy and pathological structures. This manuscript presents a comprehensive set of tools for the computation of 3D structural statistical shape analysis. It has been applied in several studies on brain morphometry, but can potentially be employed in other 3D shape problems. Its main limitations is the necessity of spherical topology. The input of the proposed shape analysis is a set of binary segmentation of a single brain structure, such as the hippocampus or caudate. These segmentations are converted into a corresponding spherical harmonic description (SPHARM), which is then sampled into a triangulated surfaces (SPHARM-PDM). After alignment, differences between groups of surfaces are computed using the Hotelling T2 two sample metric. Statistical pvalues, both raw and corrected for multiple comparisons, result in significance maps. Additional visualization of the group tests are provided via mean difference magnitude and vector maps, as well as maps of the group covariance information. The correction for multiple comparisons is performed via two separate methods that each have a distinct view of the problem. The first one aims to control the family-wise error rate (FWER) or false-positives via the extrema histogram of non-parametric permutations. The second method controls the false discovery rate and results in a less conservative estimate of the false-negatives. Prior versions of this shape analysis framework have been applied already to clinical studies on hippocampus and lateral ventricle shape in adult schizophrenics. The novelty of this submission is the use of the Hotelling T2 two-sample group difference metric for the computation of a template free statistical shape analysis. Template free group testing allowed this framework to become independent of any template choice, as well as it improved the sensitivity of our method considerably. In addition to our existing correction methodology for the multiple comparison problem using non-parametric permutation tests, we have extended the testing framework to include False Discovery Rate (FDR). FDR provides a significance correction with higher sensitivity while allowing a expected minimal amount of false-positives compared to our prior testing scheme

    Morphometric analysis of subcortical structures in progressive supranuclear palsy: In vivo evidence of neostriatal and mesencephalic atrophy

    Get PDF
    Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized by gait and postural disturbance, gaze palsy, apathy, decreased verbal fluency and dysexecutive symptoms, with some of these clinical features potentially having origins in degeneration of frontostriatal circuits and the mesencephalon. This hypothesis was investigated by manual segmentation of the caudate and putamen on MRI scans, using previously published protocols, in 15 subjects with PSP and 15 healthy age-matched controls. Midbrain atrophy was assessed by measurement of mid-sagittal area of the midbrain and pons. Shape analysis of the caudate and putamen was performed using spherical harmonics (SPHARM-PDM, University of North Carolina). The sagittal pons area/midbrain area ratio (P/M ratio) was significantly higher in the PSP group, consistent with previous findings. Significantly smaller striatal volumes were found in the PSP group - putamina were 10% smaller and caudate volumes were 17% smaller than in controls after controlling for age and intracranial volume. Shape analysis revealed significant shape deflation in PSP in the striatum, compared to controls; with regionally significant change relevant to frontostriatal and corticostriatal circuits in the caudate. Thus, in a clinically diagnosed and biomarker-confirmed cohort with early PSP, we demonstrate that neostriatal volume and shape are significantly reduced in vivo. The findings suggest a neostriatal and mesencephalic structural basis for the clinical features of PSP leading to frontostriatal and mesocortical-striatal circuit disruption. (C) 2011 Elsevier Ireland Ltd. All rights reserved

    Random fields of multivariate test statistics, with applications to shape analysis

    Full text link
    Our data are random fields of multivariate Gaussian observations, and we fit a multivariate linear model with common design matrix at each point. We are interested in detecting those points where some of the coefficients are nonzero using classical multivariate statistics evaluated at each point. The problem is to find the PP-value of the maximum of such a random field of test statistics. We approximate this by the expected Euler characteristic of the excursion set. Our main result is a very simple method for calculating this, which not only gives us the previous result of Cao and Worsley [Ann. Statist. 27 (1999) 925--942] for Hotelling's T2T^2, but also random fields of Roy's maximum root, maximum canonical correlations [Ann. Appl. Probab. 9 (1999) 1021--1057], multilinear forms [Ann. Statist. 29 (2001) 328--371], χˉ2\bar{\chi}^2 [Statist. Probab. Lett 32 (1997) 367--376, Ann. Statist. 25 (1997) 2368--2387] and χ2\chi^2 scale space [Adv. in Appl. Probab. 33 (2001) 773--793]. The trick involves approaching the problem from the point of view of Roy's union-intersection principle. The results are applied to a problem in shape analysis where we look for brain damage due to nonmissile trauma.Comment: Published in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Geometric Data Analysis: Advancements of the Statistical Methodology and Applications

    Get PDF
    Data analysis has become fundamental to our society and comes in multiple facets and approaches. Nevertheless, in research and applications, the focus was primarily on data from Euclidean vector spaces. Consequently, the majority of methods that are applied today are not suited for more general data types. Driven by needs from fields like image processing, (medical) shape analysis, and network analysis, more and more attention has recently been given to data from non-Euclidean spaces–particularly (curved) manifolds. It has led to the field of geometric data analysis whose methods explicitly take the structure (for example, the topology and geometry) of the underlying space into account. This thesis contributes to the methodology of geometric data analysis by generalizing several fundamental notions from multivariate statistics to manifolds. We thereby focus on two different viewpoints. First, we use Riemannian structures to derive a novel regression scheme for general manifolds that relies on splines of generalized Bézier curves. It can accurately model non-geodesic relationships, for example, time-dependent trends with saturation effects or cyclic trends. Since Bézier curves can be evaluated with the constructive de Casteljau algorithm, working with data from manifolds of high dimensions (for example, a hundred thousand or more) is feasible. Relying on the regression, we further develop a hierarchical statistical model for an adequate analysis of longitudinal data in manifolds, and a method to control for confounding variables. We secondly focus on data that is not only manifold- but even Lie group-valued, which is frequently the case in applications. We can only achieve this by endowing the group with an affine connection structure that is generally not Riemannian. Utilizing it, we derive generalizations of several well-known dissimilarity measures between data distributions that can be used for various tasks, including hypothesis testing. Invariance under data translations is proven, and a connection to continuous distributions is given for one measure. A further central contribution of this thesis is that it shows use cases for all notions in real-world applications, particularly in problems from shape analysis in medical imaging and archaeology. We can replicate or further quantify several known findings for shape changes of the femur and the right hippocampus under osteoarthritis and Alzheimer's, respectively. Furthermore, in an archaeological application, we obtain new insights into the construction principles of ancient sundials. Last but not least, we use the geometric structure underlying human brain connectomes to predict cognitive scores. Utilizing a sample selection procedure, we obtain state-of-the-art results

    Hypothesis Testing For Network Data in Functional Neuroimaging

    Get PDF
    In recent years, it has become common practice in neuroscience to use networks to summarize relational information in a set of measurements, typically assumed to be reflective of either functional or structural relationships between regions of interest in the brain. One of the most basic tasks of interest in the analysis of such data is the testing of hypotheses, in answer to questions such as "Is there a difference between the networks of these two groups of subjects?" In the classical setting, where the unit of interest is a scalar or a vector, such questions are answered through the use of familiar two-sample testing strategies. Networks, however, are not Euclidean objects, and hence classical methods do not directly apply. We address this challenge by drawing on concepts and techniques from geometry, and high-dimensional statistical inference. Our work is based on a precise geometric characterization of the space of graph Laplacian matrices and a nonparametric notion of averaging due to Fr\'echet. We motivate and illustrate our resulting methodologies for testing in the context of networks derived from functional neuroimaging data on human subjects from the 1000 Functional Connectomes Project. In particular, we show that this global test is more statistical powerful, than a mass-univariate approach. In addition, we have also provided a method for visualizing the individual contribution of each edge to the overall test statistic.Comment: 34 pages. 5 figure

    Doctor of Philosophy in Computing

    Get PDF
    dissertationStatistical shape analysis has emerged as an important tool for the quantitative analysis of anatomy in many medical imaging applications. The correspondence based approach to evaluate shape variability is a popular method, based on comparing configurations of carefully placed landmarks on each shape. In recent years, methods for automatic placement of landmarks have enhanced the ability of this approach to capture statistical properties of shape populations. However, biomedical shapes continue to present considerable difficulties in automatic correspondence optimization due to inherent geometric complexity and the need to correlate shape change with underlying biological parameters. This dissertation addresses these technical difficulties and presents improved shape correspondence models. In particular, this dissertation builds on the particle-based modeling (PBM) framework described by Joshua Cates' 2010 Ph.D. dissertation. In the PBM framework, correspondences are modeled as a set of dynamic points or a particle system, positioned automatically on shape surfaces by optimizing entropy contained in the model, with the idea of balancing model simplicity against accuracy of the particle system representation of shapes. This dissertation is a collection of four papers that extend the PBM framework to include shape regression and longitudinal analysis and also adds new methods to improve modeling of complex shapes. It also includes a summary of two applications from the field of orthopaedics. Technical details of the PBM framework are provided in Chapter 2, after which the first topic related to the study of shape change over time is addressed (Chapters 3 and 4). In analyses of normative growth or disease progression, shape regression models allow characterization of the underlying biological process while also facilitating comparison of a sample against a normative model. The first paper introduces a shape regression model into the PBM framework to characterize shape variability due to an underlying biological parameter. It further confirms the statistical significance of this relationship via systematic permutation testing. Simple regression models are, however, not sufficient to leverage information provided by longitudinal studies. Longitudinal studies collect data at multiple time points for each participant and have the potential to provide a rich picture of the anatomical changes occurring during development, disease progression, or recovery. The second paper presents a linear-mixed-effects (LME) shape model in order to fully leverage the high-dimensional, complex features provided by longitudinal data. The parameters of the LME shape model are estimated in a hierarchical manner within the PBM framework. The topic of geometric complexity present in certain biological shapes is addressed next (Chapters 5 and 6). Certain biological shapes are inherently complex and highly variable, inhibiting correspondence based methods from producing a faithful representation of the average shape. In the PBM framework, use of Euclidean distances leads to incorrect particle system interactions while a position-only representation leads to incorrect correspondences around sharp features across shapes. The third paper extends the PBM framework to use efficiently computed geodesic distances and also adds an entropy term based on the surface normal. The fourth paper further replaces the position-only representation with a more robust distance-from-landmark feature in the PBM framework to obtain isometry invariant correspondences. Finally, the above methods are applied to two applications from the field of orthopaedics. The first application uses correspondences across an ensemble of human femurs to characterize morphological shape differences due to femoroacetabular impingement. The second application involves an investigation of the short bone phenotype apparent in mouse models of multiple osteochondromas. Metaphyseal volume deviations are correlated with deviations in length to quantify the effect of cancer toward the apparent shortening of long bones (femur, tibia-fibula) in mouse models
    • …
    corecore