268 research outputs found

    Design and modelling of variability tolerant on-chip communication structures for future high performance system on chip designs

    Get PDF
    The incessant technology scaling has enabled the integration of functionally complex System-on-Chip (SoC) designs with a large number of heterogeneous systems on a single chip. The processing elements on these chips are integrated through on-chip communication structures which provide the infrastructure necessary for the exchange of data and control signals, while meeting the strenuous physical and design constraints. The use of vast amounts of on chip communications will be central to future designs where variability is an inherent characteristic. For this reason, in this thesis we investigate the performance and variability tolerance of typical on-chip communication structures. Understanding of the relationship between variability and communication is paramount for the designers; i.e. to devise new methods and techniques for designing performance and power efficient communication circuits in the forefront of challenges presented by deep sub-micron (DSM) technologies. The initial part of this work investigates the impact of device variability due to Random Dopant Fluctuations (RDF) on the timing characteristics of basic communication elements. The characterization data so obtained can be used to estimate the performance and failure probability of simple links through the methodology proposed in this work. For the Statistical Static Timing Analysis (SSTA) of larger circuits, a method for accurate estimation of the probability density functions of different circuit parameters is proposed. Moreover, its significance on pipelined circuits is highlighted. Power and area are one of the most important design metrics for any integrated circuit (IC) design. This thesis emphasises the consideration of communication reliability while optimizing for power and area. A methodology has been proposed for the simultaneous optimization of performance, area, power and delay variability for a repeater inserted interconnect. Similarly for multi-bit parallel links, bandwidth driven optimizations have also been performed. Power and area efficient semi-serial links, less vulnerable to delay variations than the corresponding fully parallel links are introduced. Furthermore, due to technology scaling, the coupling noise between the link lines has become an important issue. With ever decreasing supply voltages, and the corresponding reduction in noise margins, severe challenges are introduced for performing timing verification in the presence of variability. For this reason an accurate model for crosstalk noise in an interconnection as a function of time and skew is introduced in this work. This model can be used for the identification of skew condition that gives maximum delay noise, and also for efficient design verification

    Estimación estadística de consumo en FPGAs

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Escuela Politécnica Superior, junio de 200

    Phase Synchronization Operator for On-Chip Brain Functional Connectivity Computation

    Get PDF
    This paper presents an integer-based digital processor for the calculation of phase synchronization between two neural signals. It is based on the measurement of time periods between two consecutive minima. The simplicity of the approach allows for the use of elementary digital blocks, such as registers, counters, and adders. The processor, fabricated in a 0.18- μ m CMOS process, only occupies 0.05 mm 2 and consumes 15 nW from a 0.5 V supply voltage at a signal input rate of 1024 S/s. These low-area and low-power features make the proposed processor a valuable computing element in closed-loop neural prosthesis for the treatment of neural disorders, such as epilepsy, or for assessing the patterns of correlated activity in neural assemblies through the evaluation of functional connectivity maps.Ministerio de Economía y Competitividad TEC2016-80923-POffice of Naval Research (USA) N00014-19-1-215

    Rtl Power Estimation of Sequential Circuits

    Get PDF
    Power consumption has become a major concern in the electronic industry in recent years because of the increased demand for portable electronic devices. Part of the problem in power conscious design is accurate power estimation. Power estimation at low-levels of design abstraction is slow since the units of low-levels of design abstraction are transistors or gates. But designers need reliable power estimates early in the design process. Therefore designers need to have tools for fast and accurate power estimation at higher levels of design abstraction such as the Register Transfer Level (RTL). This thesis introduces a new method for RTL power estimation of CMOS sequential circuits. This method tries to estimate the average power of a sequential circuit through the combination of a low-effort synthesis of the RTL description of the sequential circuit and the parameters readily available from the RTL description of the circuit like the sum-of-product count and literal count. The quantitative and qualitative aspects of the new model are studied with MCNC91 benchmark circuits and a large set of randomly generated circuits. Quantitative power estimation with the new model is seen to be very difficult because of the highly irregular surfaces of the functions that are being modeled in an effort to understand how a synthesis tool changes the power of a circuit during optimization. A qualitative measure is then proposed for the performance of a synthesis tool in preserving the qualitative ordering of power values of different implementations of a sequential circuit. An inference about such a performance of the synthesis tool would help the designer make informed decisions about the choice of implementation of a sequential circuit from a set of broad alternatives

    3D drift diffusion and 3D Monte Carlo simulation of on-current variability due to random dopants

    Get PDF
    In this work Random Discrete Dopant induced on-current variations have been studied using the Glasgow 3D atomistic drift/diffusion simulator and Monte Carlo simulations. A methodology for incorporating quantum corrections into self-consistent atomistic Monte Carlo simulations via the density gradient effective potential is presented. Quantum corrections based on the density gradient formalism are used to simultaneously capture quantum confinement effects. The quantum corrections not only capture charge confinement effects, but accurately represent the electron impurity interaction used in previous \textit{ab initio} atomistic MC simulations, showing agreement with bulk mobility simulation. The effect of quantum corrected transport variation in statistical atomistic MC simulation is then investigated using a series of realistic scaled devices nMOSFETs transistors with channel lengths 35 nm, 25 nm, 18nm, 13 nm and 9 nm. Such simulations result in an increased drain current variability when compared with drift diffusion simulation. The comprehensive statistical analysis of drain current variations is presented separately for each scaled transistor. The investigation has shown increased current variation compared with quantum corrected drift diffusion simulation and with previous classical MC results. Furthermore, it has been studied consistently the impact of transport variability due to scattering from random discrete dopants on the on-current variability in realistic nano CMOS transistors. For the first time, a hierarchic simulation strategy to accurately transfer the increased on-current variability obtained from the ‘ab initio’ MC simulations to DD simulations is subsequently presented. The MC corrected DD simulations are used to produce target IDVGI_D-V_G characteristics from which statistical compact models are extracted for use in preliminary design kits at the early stage of new technology development. The impact of transport variability on the accuracy of delay simulation are investigated in detail. Accurate compact models extraction methodology transferring results from accurate physical variability simulation into statistical compact models suitable for statistical circuit simulation is presented. In order to examine te size of this effect on circuits Monte Carlo SPICE simulations of inverter were carried out for 100 samples

    The 1992 4th NASA SERC Symposium on VLSI Design

    Get PDF
    Papers from the fourth annual NASA Symposium on VLSI Design, co-sponsored by the IEEE, are presented. Each year this symposium is organized by the NASA Space Engineering Research Center (SERC) at the University of Idaho and is held in conjunction with a quarterly meeting of the NASA Data System Technology Working Group (DSTWG). One task of the DSTWG is to develop new electronic technologies that will meet next generation electronic data system needs. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The NASA SERC is proud to offer, at its fourth symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories, the electronics industry, and universities. These speakers share insights into next generation advances that will serve as a basis for future VLSI design

    Large-scale simulations of intrinsic parameter fluctuations in nano-scale MOSFETs

    Get PDF
    Intrinsic parameter fluctuations have become a serious obstacle to the continued scaling of MOSFET devices, particularly in the sub-100 nm regime. The increase in intrinsic parameter fluctuations means that simulations on a statistical scale are necessary to capture device parameter distributions. In this work, large-scale simulations of samples of 100,000s of devices are carried out in order to accurately characterise statistical variability of the threshold voltage in a real 35 nm MOSFET. Simulations were performed for the two dominant sources of statistical variability – random discrete dopants (RDD) and line edge roughness (LER). In total ∼400,000 devices have been simulated, taking approximately 500,000 CPU hours (60 CPU years). The results reveal the true shape of the distribution of threshold voltage, which is shown to be positively skewed for random dopants and negatively skewed for line edge roughness. Through further statistical analysis and data mining, techniques for reconstructing the distributions of the threshold voltage are developed. By using these techniques, methods are demonstrated that allow statistical enhancement of random dopant and line edge roughness simulations, thereby reducing the computational expense necessary to accurately characterise their effects. The accuracy of these techniques is analysed and they are further verified against scaled and alternative device architectures. The combined effects of RDD and LER are also investigated and it is demonstrated that the statistical combination of the individual RDD and LER-induced distributions of threshold voltage closely matches that obtained from simulations. By applying the statistical enhancement techniques developed for RDD and LER, it is shown that the computational cost of characterising their effects can be reduced by 1–2 orders of magnitude

    Design for manufacturing: Performance characterization of digital VLSI systems using a statistical analysis/inference methodology

    Get PDF
    Design For Manufacturing (DFM) is a TQM methodology by which inherently producible products can be manufactured with high yields, short turnaround time and great flexibility. The key to the success of any DFM program lies in increased accuracy in the modeling of the process and product designs, product simulations and effective manufacturing feedback of key parametric data. That is, properly modeling and simulating designs with data which reflects current fabrication capabilities has the most lasting influence in the performance of products. It is this area that is tackled in the methodology developed hereafter; a method by which to feedback and feedforward parametric data critical to the performance of Digital VLSI systems for performance prediction purposes. In this method, integrated circuit and applied statistics concepts are used jointly to perform analyses and inferences on response variables as a function of key processing and design variables that can be statistically controlled. Furthermore, an experimental design procedure utilizing electrical simulation is proposed to efficiently collect data and test previously proposed hypotheses. Conclusions are finally made with regard to the usefulness and outreach of this method, as well as those areas affected by the behavior of the performance predictors, both in the design and manufacturing stages of VLSI engineering
    corecore