82,215 research outputs found

    Statistical mechanics approaches to optimization and inference

    Get PDF
    Nowadays, typical methodologies employed in statistical physics are successfully applied to a huge set of problems arising from different research fields. In this thesis I will propose several statistical mechanics based models able to deal with two types of problems: optimization and inference problems. The intrinsic difficulty that characterizes both problems is that, due to the hard combinatorial nature of optimization and inference, finding exact solutions would require hard and impractical computations. In fact, the time needed to perform these calculations, in almost all cases, scales exponentially with respect to relevant parameters of the system and thus cannot be accomplished in practice. As combinatorial optimization addresses the problem of finding a fair configuration of variables able to minimize/maximize an objective function, inference seeks a posteriori the most fair assignment of a set of variables given a partial knowledge of the system. These two problems can be re-phrased in a statistical mechanics framework where elementary components of a physical system interact according to the constraints of the original problem. The information at our disposal can be encoded in the Boltzmann distribution of the new variables which, if properly investigated, can provide the solutions to the original problems. As a consequence, the methodologies originally adopted in statistical mechanics to study and, eventually, approximate the Boltzmann distribution can be fruitfully applied for solving inference and optimization problems. The structure of the thesis follows the path covered during the three years of my Ph.D. At first, I will propose a set of combinatorial optimization problems on graphs, the Prize collecting and the Packing of Steiner trees problems. The tools used to face these hard problems rely on the zero-temperature implementation of the Belief Propagation algorithm, called Max Sum algorithm. The second set of problems proposed in this thesis falls under the name of linear estimation problems. One of them, the compressed sensing problem, will guide us in the modelling of these problems within a Bayesian framework along with the introduction of a powerful algorithm known as Expectation Propagation or Expectation Consistent in statistical physics. I will propose a similar approach to other challenging problems: the inference of metabolic fluxes, the inverse problem of the electro-encephalography and the reconstruction of tomographic images

    A REVIEW OF PROBABILISTIC GRAPH MODELS FOR FEATURE SELECTION WITH APPLICATIONS IN ECONOMIC AND FINANCIAL TIME SERIES FORECASTING

    Get PDF
    In every field of life, people are interested to be able to forecast future.  A number of techniques are available to predict and forecasting upto a certain level of accuracy. Many techniques involve statistical tools and techniques for forecasting, modeling and control. Use of statistical techniques is growing with time and new techniques are being developed very rapidly. Especially in the field of economics and finance, the estimation and forecasting of economic and financial indicators play a vital role in decision making. Many models are developed in the last 2 decades to get better accuracy and efficiency in time series analysis and still there is a scope of learning and getting betterment in this field is available. In this research we have reviewed probability graphs, directed acyclic graphs, Bayesian networks, feature selection algorithms and Markov blankets for time series forecasting on the economic and financial problems (like stock exchange forecasting, multi-objective business risk analysis, consumers’ analysis, portfolio optimization, credit scoring etc). This is a new dimension for adaptive modeling techniques in economics and finance modeling

    Convex relaxations of penalties for sparse correlated variables with bounded total variation

    Get PDF
    International audienceWe study the problem of statistical estimation with a signal known to be sparse, spatially contiguous, and containing many highly correlated variables. We take inspiration from the recently introduced k-support norm, which has been successfully applied to sparse prediction problems with correlated features, but lacks any explicit structural constraints commonly found in machine learning and image processing. We address this problem by incorporating a total variation penalty in the k-support framework. We introduce the (k, s) support total variation norm as the tightest convex relaxation of the intersection of a set of sparsity and total variation constraints. We show that this norm leads to an intractable combinatorial graph optimization problem, which we prove to be NP-hard. We then introduce a tractable relaxation with approximation guarantees that scale well for grid structured graphs. We devise several first-order optimization strategies for statistical parameter estimation with the described penalty. We demonstrate the effectiveness of this penalty on classification in the low-sample regime, classification with M/EEG neuroimaging data, and image recovery with synthetic and real data background subtracted image recovery tasks. We extensively analyse the application of our penalty on the complex task of identifying predictive regions from low-sample high-dimensional fMRI brain data, we show that our method is particularly useful compared to existing methods in terms of accuracy, interpretability, and stability

    Factorial graphical lasso for dynamic networks

    Full text link
    Dynamic networks models describe a growing number of important scientific processes, from cell biology and epidemiology to sociology and finance. There are many aspects of dynamical networks that require statistical considerations. In this paper we focus on determining network structure. Estimating dynamic networks is a difficult task since the number of components involved in the system is very large. As a result, the number of parameters to be estimated is bigger than the number of observations. However, a characteristic of many networks is that they are sparse. For example, the molecular structure of genes make interactions with other components a highly-structured and therefore sparse process. Penalized Gaussian graphical models have been used to estimate sparse networks. However, the literature has focussed on static networks, which lack specific temporal constraints. We propose a structured Gaussian dynamical graphical model, where structures can consist of specific time dynamics, known presence or absence of links and block equality constraints on the parameters. Thus, the number of parameters to be estimated is reduced and accuracy of the estimates, including the identification of the network, can be tuned up. Here, we show that the constrained optimization problem can be solved by taking advantage of an efficient solver, logdetPPA, developed in convex optimization. Moreover, model selection methods for checking the sensitivity of the inferred networks are described. Finally, synthetic and real data illustrate the proposed methodologies.Comment: 30 pp, 5 figure
    corecore