4,517 research outputs found

    Active actuator fault-tolerant control of a wind turbine benchmark model

    Get PDF
    This paper describes the design of an active fault-tolerant control scheme that is applied to the actuator of a wind turbine benchmark. The methodology is based on adaptive filters obtained via the nonlinear geometric approach, which allows to obtain interesting decoupling property with respect to uncertainty affecting the wind turbine system. The controller accommodation scheme exploits the on-line estimate of the actuator fault signal generated by the adaptive filters. The nonlinearity of the wind turbine model is described by the mapping to the power conversion ratio from tip-speed ratio and blade pitch angles. This mapping represents the aerodynamic uncertainty, and usually is not known in analytical form, but in general represented by approximated two-dimensional maps (i.e. look-up tables). Therefore, this paper suggests a scheme to estimate this power conversion ratio in an analytical form by means of a two-dimensional polynomial, which is subsequently used for designing the active fault-tolerant control scheme. The wind turbine power generating unit of a grid is considered as a benchmark to show the design procedure, including the aspects of the nonlinear disturbance decoupling method, as well as the viability of the proposed approach. Extensive simulations of the benchmark process are practical tools for assessing experimentally the features of the developed actuator fault-tolerant control scheme, in the presence of modelling and measurement errors. Comparisons with different fault-tolerant schemes serve to highlight the advantages and drawbacks of the proposed methodology

    Detection and Isolation of Simultaneous Additive and Parametric Faults in Nonlinear Stochastic Dynamical Systems

    Get PDF
    This paper presents a new fault detection and isolation scheme for dealing with simultaneous additive and parametric faults. The new design integrates a system for additive fault detection based on Castillo and Zufiria, 2009 and a new parametric fault detection and isolation scheme inspired in Munz and Zufiria, 2008 . It is shown that the so far existing schemes do not behave correctly when both additive and parametric faults occur simultaneously; to solve the problem a new integrated scheme is proposed. Computer simulation results are presented to confirm the theoretical studies

    Set-membership parity space approach for fault detection in linear uncertain dynamic systems

    Get PDF
    Special Issue: Set-Membership Methods Applied to FDI and FTC.In this paper, a set-membership parity space approach for linear uncertain dynamic systems is proposed. First, a set of parity relations derived from the parity space approach is obtained by means of a transformation derived from the system characteristic polynomial. As a result of this transformation, parity relations can be expressed in regressor form. On the one hand, this facilitates the parameter estimation of those relations using a zonotopic set-membership algorithm. On the other hand, fault detection is then based on checking, at every sample time, the non-existence of a parameter value in the parameter uncertainty set such that the model is consistent with all the system measurements. The proposed approach is applied to two examples: a first illustrative case study based on a two-tank system and a more realistic case study based on the wind turbine fault detection and isolation benchmark in order to evaluate its effectiveness.This work has been partially funded by the grant CICYT SHERECS DPI-2011-26243 of Spanish Ministry of Education and by the European contract i-Sense (ref FP7-ICT-2009-6-270428)Peer Reviewe

    Unknown input observer approaches to robust fault diagnosis

    Get PDF
    This thesis focuses on the development of the model-based fault detection and isolation /fault detection and diagnosis (FDI/FDD) techniques using the unknown input observer (UIO) methodology. Using the UI de-coupling philosophy to tackle the robustness issue, a set of novel fault estimation (FE)-oriented UIO approaches are developed based on the classical residual generation-oriented UIO approach considering the time derivative characteristics of various faults. The main developments proposed are:- Implement the residual-based UIO design on a high fidelity commercial aircraft benchmark model to detect and isolate the elevator sensor runaway fault. The FDI design performance is validated using a functional engineering simulation (FES) system environment provided through the activity of an EU FP7 project Advanced Fault Diagnosis for Safer Flight Guidance and Control (ADDSAFE).- Propose a linear time-invariant (LTI) model-based robust fast adaptive fault estimator (RFAFE) with UI de-coupling to estimate the aircraft elevator oscillatory faults considered as actuator faults.- Propose a UI-proportional integral observer (UI-PIO) to estimate actuator multiplicative faults based on an LTI model with UI de-coupling and with added H∞ optimisation to reduce the effects of the sensor noise. This is applied to an example on a hydraulic leakage fault (multiplicative fault) in a wind turbine pitch actuator system, assuming that thefirst derivative of the fault is zero. - Develop an UI–proportional multiple integral observer (UI-PMIO) to estimate the system states and faults simultaneously with the UI acting on the system states. The UI-PMIO leads to a relaxed condition of requiring that the first time derivative of the fault is zero instead of requiring that the finite time fault derivative is zero or bounded. - Propose a novel actuator fault and state estimation methodology, the UI–proportional multiple integral and derivative observer (UI-PMIDO), inspired by both of the RFAFE and UI-PMIO designs. This leads to an observer with the comprehensive feature of estimating faults with bounded finite time derivatives and ensuring fast FE tracking response.- Extend the UI-PMIDO theory based on LTI modelling to a linear parameter varying (LPV) model approach for FE design. A nonlinear two-link manipulator example is used to illustrate the power of this method

    On design of quantized fault detection filters with randomly occurring nonlinearities and mixed time-delays

    Get PDF
    This paper is concerned with the fault detection problem for a class of discrete-time systems with randomly occurring nonlinearities, mixed stochastic time-delays as well as measurement quantizations. The nonlinearities are assumed to occur in a random way. The mixed time-delays comprise both the multiple discrete time-delays and the infinite distributed delays that occur in a random way as well. A sequence of stochastic variables is introduced to govern the random occurrences of the nonlinearities, discrete time-delays and distributed time-delays, where all the stochastic variables are mutually independent but obey the Bernoulli distribution. The main purpose of this paper is to design a fault detection filter such that, in the presence of measurement quantization, the overall fault detection dynamics is exponentially stable in the mean square and, at the same time, the error between the residual signal and the fault signal is made as small as possible. Sufficient conditions are first established via intensive stochastic analysis for the existence of the desired fault detection filters, and then the explicit expression of the desired filter gains is derived by means of the feasibility of certain matrix inequalities. Also, the optimal performance index for the addressed fault detection problem can be obtained by solving an auxiliary convex optimization problem. A practical example is provided to show the usefulness and effectiveness of the proposed design method

    Fault Detection and Isolation

    Get PDF
    Fault diagnosis of a class of linear multiple‐input and multiple‐output (MIMO) systems is developed here. An emulator‐based scheme is proposed to detect and isolate faults in a system formed by interconnected subsystems. Emulators, which are hardware or software devices, are connected to the input and measurement outputs in cascade with the subsystems whose faults are to be diagnosed. The role of an emulator is to induce variations in cascade combination of the nominal fault‐free subsystem so as to mimic the actual perturbations that may occur in the subsystem during the offline identification phase. The emulator‐generated data are employed in the reliable identification of the nominal system, the associated Kalman filter, and a map that relates the emulator parameters to the feature vector. In the operational stage, the Kalman filter residual is used to detect a fault in the system; the emulator parameter that has varied is estimated, and using the emulator‐feature vector map, the faulty subsystem is isolated. The main contributions of this work are accurate and reliable identification of the system, the fault diagnosis of multivariable systems using feature vector-emulator map fault diagnosis of multivariable systems, and the establishment of the key properties of the Kalman filter for fault detection. The proposed scheme was successfully evaluated on a number of simulated as well as physical systems

    Development and application of sliding mode LPV fault reconstruction schemes for the ADDSAFE

    Get PDF
    Copyright © 2014 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Control Engineering Practice. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Control Engineering Practice Vol. 31 (2014), DOI: 10.1016/j.conengprac.2014.05.003This paper describes the development and the evaluation of a robust sliding mode observer fault detection scheme applied to an aircraft benchmark problem as part of the ADDSAFE project. The ADDSAFE benchmark problem which is considered in this paper is the yaw rate sensor fault scenario. A robust sliding mode sensor fault reconstruction scheme based on an LPV model is presented, where the fault reconstruction signal is obtained from the so-called equivalent output error injection signal associated with the observer. The development process includes implementing the design using AIRBUS׳s the so-called SAO library which allows the automatic generation of flight certifiable code which can be implemented on the actual flight control computer. The proposed scheme has been subjected to various tests and evaluations on the Functional Engineering Simulator conducted by the industrial partners associated with the ADDSAFE project. These were designed to cover a wide range of the flight envelope, specific challenging manoeuvres and realistic fault types. The detection and isolation logic together with a statistical assessment of the FDD schemes are also presented. Simulation results from various levels of FDD developments (from tuning, testing and industrial evaluation) show consistently good results and fast detection times.European Union (FP7-233815

    Fault detection and isolation for a wind turbine benchmark using a mixed Bayesian/Set-membership approach

    Get PDF
    This paper addresses the problem of fault detection and isolation of wind turbines using a mixed Bayesian/Set-membership approach. Modeling errors are assumed to be unknown but bounded, following the set-membership approach. On the other hand, measurement noise is also assumed to be bounded, but following a statistical distribution inside the bounds. To avoid false alarms, the fault detection problem is formulated in a set-membership context. Regarding fault isolation, a new fault isolation scheme that is inspired on the Bayesian fault isolation framework is developed. Faults are isolated by matching the fault detection test results, enhanced by a complementary consistency index that measures the certainty of not being in a fault situation, with the structural information about the faults stored in the theoretical fault signature matrix. The main difference with respect to the classical Bayesian approach is that only models of fault-free behavior are used. Finally, the proposed FDI method is assessed against the wind turbine FDI benchmark proposed in the literature, where a set of realistic fault scenarios in wind turbines are proposed.Peer Reviewe
    corecore