180 research outputs found

    Interference mitigation in cognitive femtocell networks

    Get PDF
    “A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy”.Femtocells have been introduced as a solution to poor indoor coverage in cellular communication which has hugely attracted network operators and stakeholders. However, femtocells are designed to co-exist alongside macrocells providing improved spatial frequency reuse and higher spectrum efficiency to name a few. Therefore, when deployed in the two-tier architecture with macrocells, it is necessary to mitigate the inherent co-tier and cross-tier interference. The integration of cognitive radio (CR) in femtocells introduces the ability of femtocells to dynamically adapt to varying network conditions through learning and reasoning. This research work focuses on the exploitation of cognitive radio in femtocells to mitigate the mutual interference caused in the two-tier architecture. The research work presents original contributions in mitigating interference in femtocells by introducing practical approaches which comprises a power control scheme where femtocells adaptively controls its transmit power levels to reduce the interference it causes in a network. This is especially useful since femtocells are user deployed as this seeks to mitigate interference based on their blind placement in an indoor environment. Hybrid interference mitigation schemes which combine power control and resource/scheduling are also implemented. In a joint threshold power based admittance and contention free resource allocation scheme, the mutual interference between a Femtocell Access Point (FAP) and close-by User Equipments (UE) is mitigated based on admittance. Also, a hybrid scheme where FAPs opportunistically use Resource Blocks (RB) of Macrocell User Equipments (MUE) based on its traffic load use is also employed. Simulation analysis present improvements when these schemes are applied with emphasis in Long Term Evolution (LTE) networks especially in terms of Signal to Interference plus Noise Ratio (SINR)

    Modeling and Analysis of K-Tier Downlink Heterogeneous Cellular Networks

    Full text link
    Cellular networks are in a major transition from a carefully planned set of large tower-mounted base-stations (BSs) to an irregular deployment of heterogeneous infrastructure elements that often additionally includes micro, pico, and femtocells, as well as distributed antennas. In this paper, we develop a tractable, flexible, and accurate model for a downlink heterogeneous cellular network (HCN) consisting of K tiers of randomly located BSs, where each tier may differ in terms of average transmit power, supported data rate and BS density. Assuming a mobile user connects to the strongest candidate BS, the resulting Signal-to-Interference-plus-Noise-Ratio (SINR) is greater than 1 when in coverage, Rayleigh fading, we derive an expression for the probability of coverage (equivalently outage) over the entire network under both open and closed access, which assumes a strikingly simple closed-form in the high SINR regime and is accurate down to -4 dB even under weaker assumptions. For external validation, we compare against an actual LTE network (for tier 1) with the other K-1 tiers being modeled as independent Poisson Point Processes. In this case as well, our model is accurate to within 1-2 dB. We also derive the average rate achieved by a randomly located mobile and the average load on each tier of BSs. One interesting observation for interference-limited open access networks is that at a given SINR, adding more tiers and/or BSs neither increases nor decreases the probability of coverage or outage when all the tiers have the same target-SINR.Comment: IEEE Journal on Selected Areas in Communications, vol. 30, no. 3, pp. 550 - 560, Apr. 201

    Modeling and Optimization of Next-Generation Wireless Access Networks

    Get PDF
    The ultimate goal of the next generation access networks is to provide all network users, whether they are fixed or mobile, indoor or outdoor, with high data rate connectivity, while ensuring a high quality of service. In order to realize this ambitious goal, delay, jitter, error rate and packet loss should be minimized: a goal that can only be achieved through integrating different technologies, including passive optical networks, 4th generation wireless networks, and femtocells, among others. This thesis focuses on medium access control and physical layers of future networks. In this regard, the first part of this thesis discusses techniques to improve the end-to-end quality of service in hybrid optical-wireless networks. In these hybrid networks, users are connected to a wireless base station that relays their data to the core network through an optical connection. Hence, by integrating wireless and optical parts of these networks, a smart scheduler can predict the incoming traffic to the optical network. The prediction data generated herein is then used to propose a traffic-aware dynamic bandwidth assignment algorithm for reducing the end-to-end delay. The second part of this thesis addresses the challenging problem of interference management in a two-tier macrocell/femtocell network. A high quality, high speed connection for indoor users is ensured only if the network has a high signal to noise ratio. A requirement that can be fulfilled with using femtocells in cellular networks. However, since femtocells generate harmful interference to macrocell users in proximity of them, careful analysis and realistic models should be developed to manage the introduced interference. Thus, a realistic model for femtocell interference outside suburban houses is proposed and several performance measures, e.g., signal to interference and noise ratio and outage probability are derived mathematically for further analysis. The quality of service of cellular networks can be degraded by several factors. For example, in industrial environments, simultaneous fading and strong impulsive noise significantly deteriorate the error rate performance. In the third part of this thesis, a technique to improve the bit error rate of orthogonal frequency division multiplexing systems in industrial environments is presented. This system is the most widely used technology in next-generation networks, and is very susceptible to impulsive noise, especially in fading channels. Mathematical analysis proves that the proposed method can effectively mitigate the degradation caused by impulsive noise and significantly improve signal to interference and noise ratio and bit error rate, even in frequency-selective fading channels

    Modeling and design for future wireless cellular networks: coverage, rate, and security

    No full text
    Accompanied by the wide penetration of smartphones and other personal mobile devices in recent years, the foremost demand for cellular communications has been transformed from offering subscribers a way to communicate through low data rate voice call connections initially, into providing connectivity with good coverage, high data rate, as well as strong security for sensitive data transmission. To satisfy the demands for improved coverage and data rate, the cellular network is undergoing a significant transition from conventional macrocell-only deployment to heterogeneous network (HetNet), in which a multitude of radio access technologies can be co-deployed intelligently and flexibly. However, the small cells newly introduced in HetNet, such as picocells and femtocells, have complicated the network topology and the interference environment, thus presenting new challenges in network modeling and design. In recent studies, performance analyses were carried out accurately and tractably with the help of Poisson point process (PPP)-based base station (BS) model. This PPP-based model is extended in this work with the impact of directional antennas taken into account. The significance of this extension is emphasized by the wide usage of directional antennas in sectorized macrocell cells. Moreover, studies showed that little coverage improvement can be achieved if small cells are randomly deployed in a uniform-distributed way. This fact inspires us to explore the effect of the non-uniform BS deployment. We propose a non-uniform femtocell deployment scheme, in which femtocell BSs are not utilized if they are located close to any macrocell BSs. Based upon our analytical framework, this scheme can provide remarkable improvements on both coverage and data rate, thus stressing the importance of selectively deploying femtocell BSs by considering their relative locations with macrocell BSs. To alleviate the severe interference problem, the uplink attenuation technique is frequently employed in femtocell receivers to reduce the impact of interference from unattached terminals such that femtocell communication can take place. In order to analyze and optimize the femtocell system performance with this technique, we propose an analytical framework and demonstrate the performance tradeoff resulted from higher and lower uplink attenuation levels. Furthermore, we provide two improved uplink attenuation algorithms, which adaptively adjust to the information of the scheduled traffic, data rate requirement, and interference condition. Apart from the cellular coverage and data rate, communication security has been an important issue to be addressed due to the increasing demand for transmitting private and sensitive information over wireless networks. In the last part of the thesis, physical layer security, as a new way to improve wireless secrecy, is studied for cellular networks. By highlighting the unique cellular features offered by the carrier-operated high-speed backhaul, we investigate the probabilistic characterization of the secrecy rate, and identify the performance impacts of cell association and location information exchange between BSs. These results provide necessary network design guidelines for selecting the appropriate cell association method and information exchange range

    Autonomous Component Carrier Selection for 4G Femtocells

    Get PDF
    • …
    corecore