5,386 research outputs found

    A Novel Millimeter-Wave Channel Simulator and Applications for 5G Wireless Communications

    Full text link
    This paper presents details and applications of a novel channel simulation software named NYUSIM, which can be used to generate realistic temporal and spatial channel responses to support realistic physical- and link-layer simulations and design for fifth-generation (5G) cellular communications. NYUSIM is built upon the statistical spatial channel model for broadband millimeter-wave (mmWave) wireless communication systems developed by researchers at New York University (NYU). The simulator is applicable for a wide range of carrier frequencies (500 MHz to 100 GHz), radio frequency (RF) bandwidths (0 to 800 MHz), antenna beamwidths (7 to 360 degrees for azimuth and 7 to 45 degrees for elevation), and operating scenarios (urban microcell, urban macrocell, and rural macrocell), and also incorporates multiple-input multiple-output (MIMO) antenna arrays at the transmitter and receiver. This paper also provides examples to demonstrate how to use NYUSIM for analyzing MIMO channel conditions and spectral efficiencies, which show that NYUSIM is an alternative and more realistic channel model compared to the 3rd Generation Partnership Project (3GPP) and other channel models for mmWave bands.Comment: 7 pages, 8 figures, in 2017 IEEE International Conference on Communications (ICC), Paris, May 201

    Multi-Polarized Channel Characterization

    Get PDF
    Machine-to-machine (M2M) communication is becoming an important aspect of warehouse management, remote control, robotics, traffic control, supply chain management, fleet management and telemedicine. M2M is expected to become a significant portion of the Industrial Internet and, more broadly, the Internet of Things (IoT). The environments in which M2M systems are expected to operate may be challenging in terms of radio wave propagation due to their cluttered, multipath nature, which can cause deep signal fades and signal depolarization. Polarization diversity in two dimensions is a well-known technique to mitigate such fades. But in the presence of reflectors and retarders where multipath components arrive from any direction, we find the detrimental effects to be three-dimensional and thus consider herein mitigation approaches that are also 3D. The objectives of this dissertation are three. First, to provide a theoretical framework for depolarization in three dimensions. Second, to prepare a tripolar antenna design that meets cost, power consumption, and simplicity requirements of M2M applications and that can mitigate the expected channel effects. Finally, to develop new channel models in three dimensional space for wireless systems. Accordingly, this dissertation presents a complete description of 3D electromagnetic fields, in terms of their polarization characteristics and confirms the advantage of employing tripolar antennas in multipath conditions. Furthermore, the experimental results illustrate that highly variable depolarization occurs across all three spatial dimensions and is dependent on small changes in frequency and space. Motivated by these empirical results, we worked with a collaborating institution to develop a three-dimensional tripolar antenna that can be integrated with a commercially available wireless sensor. This dissertation presents the testing results that show that this design significantly improves channels over traditional 2D approaches. The implications of tripolar antenna integration on M2M systems include reduction in energy use, longer wireless communication link distances, and/or greater link reliability. Similar results are shown for a planar antenna design that enables four different polarization configurations. Finally, the work presents a novel three-dimensional geometry-based stochastic channel model that builds the channel as a sum of shell-like sub-regions, where each sub-region consists of groups of multipath components. The model is validated with empirical data to show the approach may be used for system analyses in indoor environments

    Pulses in the Sand: Impulse Response Analysis of Wireless Underground Channel

    Get PDF
    Wireless underground sensor networks (WUSNs) are becoming ubiquitous in many areas and designing robust systems requires extensive understanding of the underground (UG) channel characteristics. In this paper, UG channel impulse response is modeled and validated via extensive experiments in indoor and field testbed settings. Three distinct types of soils are selected with sand and clay contents ranging from 13% to 86% and 3% to 32%, respectively. Impacts of changes in soil texture and soil moisture are investigated with more than 1,200 measurements in a novel UG testbed that allows flexibility in soil moisture control. Time domain characteristics of channel such as RMS delay spread, coherence bandwidth, and multipath power gain are analyzed. The analysis of the power delay profile validates the three main components of the UG channel: direct, reflected, and lateral waves. It is shown that RMS delay spread follows a log-normal distribution. The coherence bandwidth ranges between 650 kHz and 1.15MHz for soil paths of up to 1m and decreases to 418 kHz for distances above 10m. Soil moisture is shown to affect RMS delay spread non-linearly, which provides opportunities for soil moisture-based dynamic adaptation techniques. The model and analysis paves the way for tailored solutions for data harvesting, UG sub-carrier communication, and UG beamforming
    • …
    corecore