47 research outputs found

    Data-Mining Techniques for Call-Graph-Based Software-Defect Localisation

    Get PDF
    Defect localisation is an important problem in software engineering. This dissertation investigates call-graph-mining-based software defect localisation, which supports software developers by providing hints where defects might be located. It extends the state-of-the-art by proposing new graph representations and mining techniques for weighted graphs. This leads to a broader range of detectable defects, to an increased localisation precision and to enhanced scalability

    AUTOMATED DEBUGGING AND FAULT LOCALIZATION OF MATLAB/SIMULINK MODELS

    Get PDF
    Matlab/Simulink is an advanced environment for modeling and simulating multidomain dynamic systems. It has been widely used to model advanced Cyber-Physical Systems, e.g. in the automotive or avionics industry. To ensure the reliability of Simulink models (i.e., ensuring that they are free of faults), these models are subject to extensive testing to verify the logic and behavior of software modules developed in the models. Due to the complex structure of Simulink models, finding root causes of failures (i.e., faults) is an expensive and time-consuming task. Therefore, there is a high demand for automatic fault localization techniques that can help en- gineers to locate faults in Simulink models with less human intervention. This demand leads to the proposal and development of various approaches and techniques that are able to automatically locate faults in Simulink models. Fault localization has been an active research area that focuses on developing automated tech- niques to support software debugging. Although there have been many techniques proposed to localize faults in programs, there has not been much research on fault localization for Simulink models. In this dissertation, we investigate and develop a lightweight fault localization approach to automatically and accurately locate faults in Simulink models. To enhance the usability of our approach, we also develop a stand-alone desktop application that provides engineers with a usable interface to facilitate localization of faults in their models

    Dagstuhl News January - December 2011

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    Similarity Reasoning over Semantic Context-Graphs

    Get PDF
    Similarity is a central cognitive mechanism for humans which enables a broad range of perceptual and abstraction processes, including recognizing and categorizing objects, drawing parallelism, and predicting outcomes. It has been studied computationally through models designed to replicate human judgment. The work presented in this dissertation leverages general purpose semantic networks to derive similarity measures in a problem-independent manner. We model both general and relational similarity using connectivity between concepts within semantic networks. Our first contribution is to model general similarity using concept connectivity, which we use to partition vocabularies into topics without the need of document corpora. We apply this model to derive topics from unstructured dialog, specifically enabling an early literacy primer application to support parents in having better conversations with their young children, as they are using the primer together. Second, we model relational similarity in proportional analogies. To do so, we derive relational parallelism by searching in semantic networks for similar path pairs that connect either side of this analogy statement. We then derive human readable explanations from the resulting similar path pair. We show that our model can answer broad-vocabulary analogy questions designed for human test takers with high confidence. The third contribution is to enable symbolic plan repair in robot planning through object substitution. When a failure occurs due to unforeseen changes in the environment, such as missing objects, we enable the planning domain to be extended with a number of alternative objects such that the plan can be repaired and execution to continue. To evaluate this type of similarity, we use both general and relational similarity. We demonstrate that the task context is essential in establishing which objects are interchangeable

    Combining Fault Localization with Information Retrieval: an Analysis of Accuracy and Performance for Bug Finding

    Get PDF
    Debugging is a key activity in the software development process. It has been used extensively by developers to attempt to localize faults, while enhancing the quality and performance of software in general. There has been a significant amount of study in developing and enhancing fault localization techniques, which are used in assisting developers to locate faults within a body of code. However, identifying fault locations using individual techniques is not always effective; combining different techniques, which represent distinct forms of analysis, might help to overcome this issue. There has been a very limited amount of research that suggests that combining more than one approach to fault localization may have benefits, principally because information from different sources is included in the localization process. In this thesis, I attempt to more precisely address the question of whether combining different fault localization techniques can more effectively and efficiently find faults in code, when contrasted with a single technique. To answer this, I have carried out experiments that combine the use of three fault localization techniques: Information Retrieval (IR), Spectrum Based Fault Localization (SBFL), and Text Based Search. These techniques are representative of both dynamic and static fault localization. My hypothesis is that a combination of dynamic and static fault localization analysis can assist developers in better fault localization. I have evaluated the various combinations of techniques in identifying faults against real-world programs, Defects4j, where 395 faults and bug reports have been analyzed. The experimental results demonstrate that the combination of three techniques (SBFL, Text Search, and IR) is the most accurate, with 86.84% accuracy for 343 faults located from a total of 395. This finding contributes positively towards concretely recommending techniques for assisting developers in locating faults in code. Guidelines are provided on which combination of techniques, with maximal accuracy of result, should be applied especially when there is no prior knowledge about the fault

    Exploring means to facilitate software debugging

    Get PDF
    In this thesis, several aspects of software debugging from automated crash reproduction to bug report analysis and use of contracts have been studied.Algorithms and the Foundations of Software technolog

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Fundamental Approaches to Software Engineering, FASE 2022, which was held during April 4-5, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 17 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. The proceedings also contain 3 contributions from the Test-Comp Competition. The papers deal with the foundations on which software engineering is built, including topics like software engineering as an engineering discipline, requirements engineering, software architectures, software quality, model-driven development, software processes, software evolution, AI-based software engineering, and the specification, design, and implementation of particular classes of systems, such as (self-)adaptive, collaborative, AI, embedded, distributed, mobile, pervasive, cyber-physical, or service-oriented applications

    Evidence-driven testing and debugging of software systems

    Get PDF
    Program debugging is the process of testing, exposing, reproducing, diagnosing and fixing software bugs. Many techniques have been proposed to aid developers during software testing and debugging. However, researchers have found that developers hardly use or adopt the proposed techniques in software practice. Evidently, this is because there is a gap between proposed methods and the state of software practice. Most methods fail to address the actual needs of software developers. In this dissertation, we pose the following scientific question: How can we bridge the gap between software practice and the state-of-the-art automated testing and debugging techniques? To address this challenge, we put forward the following thesis: Software testing and debugging should be driven by empirical evidence collected from software practice. In particular, we posit that the feedback from software practice should shape and guide (the automation) of testing and debugging activities. In this thesis, we focus on gathering evidence from software practice by conducting several empirical studies on software testing and debugging activities in the real-world. We then build tools and methods that are well-grounded and driven by the empirical evidence obtained from these experiments. Firstly, we conduct an empirical study on the state of debugging in practice using a survey and a human study. In this study, we ask developers about their debugging needs and observe the tools and strategies employed by developers while testing, diagnosing and repairing real bugs. Secondly, we evaluate the effectiveness of the state-of-the-art automated fault localization (AFL) methods on real bugs and programs. Thirdly, we conducted an experiment to evaluate the causes of invalid inputs in software practice. Lastly, we study how to learn input distributions from real-world sample inputs, using probabilistic grammars. To bridge the gap between software practice and the state of the art in software testing and debugging, we proffer the following empirical results and techniques: (1) We collect evidence on the state of practice in program debugging and indeed, we found that there is a chasm between (available) debugging tools and developer needs. We elicit the actual needs and concerns of developers when testing and diagnosing real faults and provide a benchmark (called DBGBench) to aid the automated evaluation of debugging and repair tools. (2) We provide empirical evidence on the effectiveness of several state-of-the-art AFL techniques (such as statistical debugging formulas and dynamic slicing). Building on the obtained empirical evidence, we provide a hybrid approach that outperforms the state-of-the-art AFL techniques. (3) We evaluate the prevalence and causes of invalid inputs in software practice, and we build on the lessons learned from this experiment to build a general-purpose algorithm (called ddmax) that automatically diagnoses and repairs real-world invalid inputs. (4) We provide a method to learn the distribution of input elements in software practice using probabilistic grammars and we further employ the learned distribution to drive the test generation of inputs that are similar (or dissimilar) to sample inputs found in the wild. In summary, we propose an evidence-driven approach to software testing and debugging, which is based on collecting empirical evidence from software practice to guide and direct software testing and debugging. In our evaluation, we found that our approach is effective in improving the effectiveness of several debugging activities in practice. In particular, using our evidence-driven approach, we elicit the actual debugging needs of developers, improve the effectiveness of several automated fault localization techniques, effectively debug and repair invalid inputs, and generate test inputs that are (dis)similar to real-world inputs. Our proposed methods are built on empirical evidence and they improve over the state-of-the-art techniques in testing and debugging.Software-Debugging bezeichnet das Testen, Aufspüren, Reproduzieren, Diagnostizieren und das Beheben von Fehlern in Programmen. Es wurden bereits viele Debugging-Techniken vorgestellt, die Softwareentwicklern beim Testen und Debuggen unterstützen. Dennoch hat sich in der Forschung gezeigt, dass Entwickler diese Techniken in der Praxis kaum anwenden oder adaptieren. Das könnte daran liegen, dass es einen großen Abstand zwischen den vorgestellten und in der Praxis tatsächlich genutzten Techniken gibt. Die meisten Techniken genügen den Anforderungen der Entwickler nicht. In dieser Dissertation stellen wir die folgende wissenschaftliche Frage: Wie können wir die Kluft zwischen Software-Praxis und den aktuellen wissenschaftlichen Techniken für automatisiertes Testen und Debugging schließen? Um diese Herausforderung anzugehen, stellen wir die folgende These auf: Das Testen und Debuggen von Software sollte von empirischen Daten, die in der Software-Praxis gesammelt wurden, vorangetrieben werden. Genauer gesagt postulieren wir, dass das Feedback aus der Software-Praxis die Automation des Testens und Debuggens formen und bestimmen sollte. In dieser Arbeit fokussieren wir uns auf das Sammeln von Daten aus der Software-Praxis, indem wir einige empirische Studien über das Testen und Debuggen von Software in der echten Welt durchführen. Auf Basis der gesammelten Daten entwickeln wir dann Werkzeuge, die sich auf die Daten der durchgeführten Experimente stützen. Als erstes führen wir eine empirische Studie über den Stand des Debuggens in der Praxis durch, wobei wir eine Umfrage und eine Humanstudie nutzen. In dieser Studie befragen wir Entwickler zu ihren Bedürfnissen, die sie beim Debuggen haben und beobachten die Werkzeuge und Strategien, die sie beim Diagnostizieren, Testen und Aufspüren echter Fehler einsetzen. Als nächstes bewerten wir die Effektivität der aktuellen Automated Fault Localization (AFL)- Methoden zum automatischen Aufspüren von echten Fehlern in echten Programmen. Unser dritter Schritt ist ein Experiment, um die Ursachen von defekten Eingaben in der Software-Praxis zu ermitteln. Zuletzt erforschen wir, wie Häufigkeitsverteilungen von Teileingaben mithilfe einer Grammatik von echten Beispiel-Eingaben aus der Praxis gelernt werden können. Um die Lücke zwischen Software-Praxis und der aktuellen Forschung über Testen und Debuggen von Software zu schließen, bieten wir die folgenden empirischen Ergebnisse und Techniken: (1) Wir sammeln aktuelle Forschungsergebnisse zum Stand des Software-Debuggens und finden in der Tat eine Diskrepanz zwischen (vorhandenen) Debugging-Werkzeugen und dem, was der Entwickler tatsächlich benötigt. Wir sammeln die tatsächlichen Bedürfnisse von Entwicklern beim Testen und Debuggen von Fehlern aus der echten Welt und entwickeln einen Benchmark (DbgBench), um das automatische Evaluieren von Debugging-Werkzeugen zu erleichtern. (2) Wir stellen empirische Daten zur Effektivität einiger aktueller AFL-Techniken vor (z.B. Statistical Debugging-Formeln und Dynamic Slicing). Auf diese Daten aufbauend, stellen wir einen hybriden Algorithmus vor, der die Leistung der aktuellen AFL-Techniken übertrifft. (3) Wir evaluieren die Häufigkeit und Ursachen von ungültigen Eingaben in der Softwarepraxis und stellen einen auf diesen Daten aufbauenden universell einsetzbaren Algorithmus (ddmax) vor, der automatisch defekte Eingaben diagnostiziert und behebt. (4) Wir stellen eine Methode vor, die Verteilung von Schnipseln von Eingaben in der Software-Praxis zu lernen, indem wir Grammatiken mit Wahrscheinlichkeiten nutzen. Die gelernten Verteilungen benutzen wir dann, um den Beispiel-Eingaben ähnliche (oder verschiedene) Eingaben zu erzeugen. Zusammenfassend stellen wir einen auf der Praxis beruhenden Ansatz zum Testen und Debuggen von Software vor, welcher auf empirischen Daten aus der Software-Praxis basiert, um das Testen und Debuggen zu unterstützen. In unserer Evaluierung haben wir festgestellt, dass unser Ansatz effektiv viele Debugging-Disziplinen in der Praxis verbessert. Genauer gesagt finden wir mit unserem Ansatz die genauen Bedürfnisse von Entwicklern, verbessern die Effektivität vieler AFL-Techniken, debuggen und beheben effektiv fehlerhafte Eingaben und generieren Test-Eingaben, die (un)ähnlich zu Eingaben aus der echten Welt sind. Unsere vorgestellten Methoden basieren auf empirischen Daten und verbessern die aktuellen Techniken des Testens und Debuggens
    corecore