238 research outputs found

    Statistical modeling of polarimetric SAR data: a survey and challenges

    Get PDF
    Knowledge of the exact statistical properties of the signal plays an important role in the applications of Polarimetric Synthetic Aperture Radar (PolSAR) data. In the last three decades, a considerable research effort has been devoted to finding accurate statistical models for PolSAR data, and a number of distributions have been proposed. In order to see the differences of various models and to make a comparison among them, a survey is provided in this paper. Texture models, which could capture the non-Gaussian behavior observed in high resolution data, and yet keep a compact mathematical form, are mainly explained. Probability density functions for the single look data and the multilook data are reviewed, as well as the advantages and applicable context of those models. As a summary, challenges in the area of statistical analysis of PolSAR data are also discussed.Peer ReviewedPostprint (published version

    Analysis of Polarimetric Synthetic Aperture Radar and Passive Visible Light Polarimetric Imaging Data Fusion for Remote Sensing Applications

    Get PDF
    The recent launch of spaceborne (TerraSAR-X, RADARSAT-2, ALOS-PALSAR, RISAT) and airborne (SIRC, AIRSAR, UAVSAR, PISAR) polarimetric radar sensors, with capability of imaging through day and night in almost all weather conditions, has made polarimetric synthetic aperture radar (PolSAR) image interpretation and analysis an active area of research. PolSAR image classification is sensitive to object orientation and scattering properties. In recent years, significant work has been done in many areas including agriculture, forestry, oceanography, geology, terrain analysis. Visible light passive polarimetric imaging has also emerged as a powerful tool in remote sensing for enhanced information extraction. The intensity image provides information on materials in the scene while polarization measurements capture surface features, roughness, and shading, often uncorrelated with the intensity image. Advantages of visible light polarimetric imaging include high dynamic range of polarimetric signatures and being comparatively straightforward to build and calibrate. This research is about characterization and analysis of the basic scattering mechanisms for information fusion between PolSAR and passive visible light polarimetric imaging. Relationships between these two modes of imaging are established using laboratory measurements and image simulations using the Digital Image and Remote Sensing Image Generation (DIRSIG) tool. A novel low cost laboratory based S-band (2.4GHz) PolSAR instrument is developed that is capable of capturing 4 channel fully polarimetric SAR image data. Simple radar targets are formed and system calibration is performed in terms of radar cross-section. Experimental measurements are done using combination of the PolSAR instrument with visible light polarimetric imager for scenes capturing basic scattering mechanisms for phenomenology studies. The three major scattering mechanisms studied in this research include single, double and multiple bounce. Single bounce occurs from flat surfaces like lakes, rivers, bare soil, and oceans. Double bounce can be observed from two adjacent surfaces where one horizontal flat surface is near a vertical surface such as buildings and other vertical structures. Randomly oriented scatters in homogeneous media produce a multiple bounce scattering effect which occurs in forest canopies and vegetated areas. Relationships between Pauli color components from PolSAR and Degree of Linear Polarization (DOLP) from passive visible light polarimetric imaging are established using real measurements. Results show higher values of the red channel in Pauli color image (|HH-VV|) correspond to high DOLP from double bounce effect. A novel information fusion technique is applied to combine information from the two modes. In this research, it is demonstrated that the Degree of Linear Polarization (DOLP) from passive visible light polarimetric imaging can be used for separation of the classes in terms of scattering mechanisms from the PolSAR data. The separation of these three classes in terms of the scattering mechanisms has its application in the area of land cover classification and anomaly detection. The fusion of information from these particular two modes of imaging, i.e. PolSAR and passive visible light polarimetric imaging, is a largely unexplored area in remote sensing and the main challenge in this research is to identify areas and scenarios where information fusion between the two modes is advantageous for separation of the classes in terms of scattering mechanisms relative to separation achieved with only PolSAR

    Estimation of Forest Biomass and Faraday Rotation using Ultra High Frequency Synthetic Aperture Radar

    Get PDF
    Synthetic Aperture Radar (SAR) data in the Ultra High Frequency (UHF; 300 MHz – 3 GHz)) band have been shown to be strongly dependent of forest biomass, which is a poorly estimated variable in the global carbon cycle. In this thesis UHF-band SAR data from the fairly flat hemiboreal test site Remningstorp in southern Sweden were analysed. The data were collected on several occasions with different moisture conditions during the spring of 2007. Regression models for biomass estimation on stand level (0.5-9 ha) were developed for each date on which SAR data were acquired. For L-band (centre frequency 1.3 GHz) the best estimation model was based on HV-polarized backscatter, giving a root mean squared error (rmse) between 31% and 46% of the mean biomass. For P-band (centre frequency 340 MHz), regression models including HH, HV or HH and HV backscatter gave an rmse between 18% and 27%. Little or no saturation effects were observed up to 290 t/ha for P-band. A model based on physical-optics has been developed and was used to predict HH-polarized SAR data with frequencies from 20 MHz to 500 MHz from a set of vertical trunks standing on an undulating ground surface. The model shows that ground topography is a critical issue in SAR imaging for these frequencies. A regression model for biomass estimation which includes a correction for ground slope was developed using multi-polarized P-band SAR data from Remningstorp as well as from the boreal test site Krycklan in northern Sweden. The latter test site has pronounced topographic variability. It was shown that the model was able to partly compensate for moisture variability, and that the model gave an rmse of 22-33% when trained using data from Krycklan and evaluated using data from Remningstorp. Regression modelling based on P-band backscatter was also used to estimate biomass change using data acquired in Remningstorp during the spring 2007 and during the fall 2010. The results show that biomass change can be measured with an rmse of about 15% or 20 tons/ha. This suggests that not only deforestation, but also forest growth and degradation (e.g. thinning) can be measured using P-band SAR data. The thesis also includes result on Faraday rotation, which is an ionospheric effect which can have a significant impact on spaceborne UHF-band SAR images. Faraday rotation angles are estimated in spaceborne L-band SAR data. Estimates based on distributed targets and calibration targets with high signal to clutter ratios are found to be in very good agreement. Moreover, a strong correlation with independent measurements of Total Electron Content is found, further validating the estimates

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3, reports on six research projects and a list of publications and conference papers.Joint Services Electronics Program Contract DAAL03-89-C-0001National Science Foundation Grant ECS 86-20029Schlumberger- Doll ResearchU.S. Army Research Office Contract DAAL03 88-K-0057U.S. Navy - Office of Naval Research Contract N00014-90-J-1002National Aeronautics and Space Administration Grant NAGW-1617U.S. Navy - Office of Naval Research Grant N00014-89-J-1107National Aeronautics and Space Administration Grant NAGW-1272National Aeronautics and Space Administration Agreement 958461U.S. Army - Corps of Engineers Contract DACA39-87-K-0022U.S. Air Force - Electronic Systems Division Contract F19628-88-K-0013U.S. Navy - Office of Naval Research Grant N00014-89-J-1019Digital Equipment CorporationIBM CorporationU.S. Department of Transportation Contract DTRS-57-88-C-00078Defence Advanced Research Projects Agency Contract MDA972-90-C-002

    Coherent Change Detection Under a Forest Canopy

    Get PDF
    Coherent change detection (CCD) is an established technique for remotely monitoring landscapes with minimal vegetation or buildings. By evaluating the local complex correlation between a pair of synthetic aperture radar (SAR) images acquired on repeat passes of an airborne or spaceborne imaging radar system, a map of the scene coherence is obtained. Subtle disturbances of the ground are detected as areas of low coherence in the surface clutter. This thesis investigates extending CCD to monitor the ground in a forest. It is formulated as a multichannel dual-layer coherence estimation problem, where the coherence of scattering from the ground is estimated after suppressing interference from the canopy by vertically beamforming multiple image channels acquired at slightly different grazing angles on each pass. This 3D SAR beamforming must preserve the phase of the ground response. The choice of operating wavelength is considered in terms of the trade-off between foliage penetration and change sensitivity. A framework for comparing the performance of different radar designs and beamforming algorithms, as well as assessing the sensitivity to error, is built around the random-volume-over-ground (RVOG) model of forest scattering. If the ground and volume scattering contributions in the received echo are of similar strength, it is shown that an L-band array of just three channels can provide enough volume attenuation to permit reasonable estimation of the ground coherence. The proposed method is demonstrated using an RVOG clutter simulation and a modified version of the physics-based SAR image simulator PolSARproSim. Receiver operating characteristics show that whilst ordinary single-channel CCD is unusable when a canopy is present, 3D SAR CCD permits reasonable detection performance. A novel polarimetric filtering algorithm is also proposed to remove contributions from the ground-trunk double-bounce scattering mechanism, which may mask changes on the ground near trees. To enable this kind of polarimetric processing, fully polarimetric data must be acquired and calibrated. Motivated by an interim version of the Ingara airborne imaging radar, which used a pair of helical antennas to acquire circularly polarised data, techniques for the estimation of polarimetric distortion in the circular basis are investigated. It is shown that the standard approach to estimating cross-talk in the linear basis, whereby expressions for the distortion of reflection-symmetric clutter are linearised and solved, cannot be adapted to the circular basis, because the first-order effects of individual cross-talk parameters cannot be distinguished. An alternative approach is proposed that uses ordinary and gridded trihedral corner reflectors, and optionally dihedrals, to iteratively estimate the channel imbalance and cross-talk parameters. Monte Carlo simulations show that the method reliably converges to the true parameter values. Ingara data is calibrated using the method, with broadly consistent parameter estimates obtained across flights. Genuine scene changes may be masked by coherence loss that arises when the bands of spatial frequencies supported by the two passes do not match. Trimming the spatial-frequency bands to their common area of support would remove these uncorrelated contributions, but the bands, and therefore the required trim, depend on the effective collection geometry at each pixel position. The precise dependence on local slope and collection geometry is derived in this thesis. Standard methods of SAR image formation use a flat focal plane and allow only a single global trim, which leads to spatially varying coherence loss when the terrain is undulating. An image-formation algorithm is detailed that exploits the flexibility offered by back-projection not only to focus the image onto a surface matched to the scene topography but also to allow spatially adaptive trimming. Improved coherence is demonstrated in simulation and using data from two airborne radar systems.Thesis (Ph.D.) -- University of Adelaide, School of Electrical & Electronic Engineering, 202

    Statistical comparison of SAR backscatter from icebergs embedded in sea ice and in open water using RADARSAT-2 images of in Newfoundland waters and the Davis Strait

    Get PDF
    Icebergs are considered a threat to marine operations. Satellite monitoring of icebergs is one option to aid in the development of iceberg hazard maps. Satellite synthetic aperture radar (SAR) is an obvious choice because of its relative weather independence, day and night operation. Nonetheless, the detection of icebergs in SAR can be a challenge, particularly with high iceberg areal density, heterogeneous background clutter and the presence of sea ice. This thesis investigates and compares polarimetric signatures of icebergs embedded in sea ice and icebergs in open water. In this thesis, RADARSAT-2 images have been used for analysis, which was acquired over locations near the coastline (approximately 3-35 km) of the islands of Newfoundland and Greenland. All icebergs considered here are in the lower incident angle range (below 30 degrees) of the SAR acquisition geometry. For analysis, polarimetry parameters such as co- (HH) and cross- (HV) polarization and several decomposition techniques, specifically Pauli, Freeman-Durden, Yamaguchi, Cloud-Pottier and van Zyl classification, have been used to determine the polarimetric signatures of icebergs and sea ice. Statistical hypothesis tests were used to determine the differences among backscatters from different icebergs. Statistical results tend to show a dominant surface scattering mechanism for icebergs. Moreover, icebergs in open water produce larger volume scatter than icebergs in sea ice, while icebergs in sea ice produce larger surface scatter than icebergs in open water. In addition, there appear to be minor observable differences between icebergs in Greenland and icebergs in Newfoundland

    Summaries of the Sixth Annual JPL Airborne Earth Science Workshop

    Get PDF
    The Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996, was divided into two smaller workshops:(1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, and The Airborne Synthetic Aperture Radar (AIRSAR) workshop. This current paper, Volume 2 of the Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, presents the summaries for The Airborne Synthetic Aperture Radar (AIRSAR) workshop

    Ship detection on open sea and coastal environment

    Get PDF
    Synthetic Aperture Radar (SAR) is a high-resolution ground-mapping technique with the ability to effectively synthesize a large radar antenna by processing the phase of a smaller radar antenna on a moving platform like an airplane or a satellite. SAR images, due to its properties, have been the focus of many applications such as land and sea monitoring, remote sensing, mapping of surfaces, weather forecasting, among many others. Their relevance is increasing on a daily basis, thus it’s crucial to apply the best suitable method or technique to each type of data collected. Several techniques have been published in the literature so far to enhance automatic ship detection using Synthetic Aperture Radar (SAR) images, like multilook imaging techniques, polarization techniques, Constant False Alarm Rate (CFAR) techniques, Amplitude Change Detection (ACD) techniques among many others. Depending on how the information is gathered and processed, each technique presents different performance and results. Nowadays there are several ongoing SAR missions, and the need to improve ship detection, oil-spills or any kind of sea activity is fundamental to preserve and promote navigation safety as well as constant and accurate monitoring of the surroundings, for example, detection of illegal fishing activities, pollution or drug trafficking. The main objective of this MSc dissertation is to study and implement a set of algorithms for automatic ship detection using SAR images from Sentinel-1 due to its characteristics as well as its ease access. The dissertation organization is as follows: Chapter 1 presents a brief introduction to the theme of this dissertation and its aim, as well as its structure; Chapter 2 summarizes a variety of fundamental key points from historical events and developments to the SAR theory, finishing with a summary of some well-known ship detection methods; Chapter 3 presents a basic guideline to choose the best ship detection technique depending on the data type and operational scenario; Chapter 4 focus on the CFAR technique detailing the implemented algorithms. This technique was selected, given the data set available for testing in this work; Chapter 5 presents the results obtained using the implemented algorithms; Chapter 6 presents the conclusions, final remarks and future work

    Models for Synthetic Aperture Radar Image Analysis

    Get PDF
    After reviewing some classical statistical hypothesis commonly used in image processing and analysis, this paper presents some models that are useful in synthetic aperture radar (SAR) image analysis

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3, research summary and reports on six research projects.Joint Services Electronics Program (Contract DAAL 03-86-K-0002)Joint Services Electronics Program (Contract DAAL 03-89-C-0001)U.S. Navy - Office of Naval Research (Contract N00014-86-K-0533)National Science Foundation (Contract ECS 86-20029)U.S. Army Research Office (Contract DAAL03 88-K-0057)International Business Machine CorporationSchlumberger-Doll ResearchNational Aeronautics and Space Administration (Contract NAG 5-270)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0258)National Aeronautics and Space Administration (Contract NAG 5-769)U.S. Army Corps of Engineers - Waterways Experimental Station (Contract DACA39-87-K-0022)Simulation TechnologiesU.S. Air Force - Rome Air Development Center (Contract F19628-88-K-0013)U.S. Navy - Office of Naval Research (Contract N00014-89-J-1107)Digital Equipment Corporatio
    • …
    corecore