46,729 research outputs found

    Compact Personalized Models for Neural Machine Translation

    Full text link
    We propose and compare methods for gradient-based domain adaptation of self-attentive neural machine translation models. We demonstrate that a large proportion of model parameters can be frozen during adaptation with minimal or no reduction in translation quality by encouraging structured sparsity in the set of offset tensors during learning via group lasso regularization. We evaluate this technique for both batch and incremental adaptation across multiple data sets and language pairs. Our system architecture - combining a state-of-the-art self-attentive model with compact domain adaptation - provides high quality personalized machine translation that is both space and time efficient.Comment: Published at the 2018 Conference on Empirical Methods in Natural Language Processin

    Constraining Implicit Space with Minimum Description Length: An Unsupervised Attention Mechanism across Neural Network Layers

    Full text link
    Inspired by the adaptation phenomenon of neuronal firing, we propose the regularity normalization (RN) as an unsupervised attention mechanism (UAM) which computes the statistical regularity in the implicit space of neural networks under the Minimum Description Length (MDL) principle. Treating the neural network optimization process as a partially observable model selection problem, UAM constrains the implicit space by a normalization factor, the universal code length. We compute this universal code incrementally across neural network layers and demonstrated the flexibility to include data priors such as top-down attention and other oracle information. Empirically, our approach outperforms existing normalization methods in tackling limited, imbalanced and non-stationary input distribution in image classification, classic control, procedurally-generated reinforcement learning, generative modeling, handwriting generation and question answering tasks with various neural network architectures. Lastly, UAM tracks dependency and critical learning stages across layers and recurrent time steps of deep networks

    Diversified Texture Synthesis with Feed-forward Networks

    Full text link
    Recent progresses on deep discriminative and generative modeling have shown promising results on texture synthesis. However, existing feed-forward based methods trade off generality for efficiency, which suffer from many issues, such as shortage of generality (i.e., build one network per texture), lack of diversity (i.e., always produce visually identical output) and suboptimality (i.e., generate less satisfying visual effects). In this work, we focus on solving these issues for improved texture synthesis. We propose a deep generative feed-forward network which enables efficient synthesis of multiple textures within one single network and meaningful interpolation between them. Meanwhile, a suite of important techniques are introduced to achieve better convergence and diversity. With extensive experiments, we demonstrate the effectiveness of the proposed model and techniques for synthesizing a large number of textures and show its applications with the stylization.Comment: accepted by CVPR201

    Task Runtime Prediction in Scientific Workflows Using an Online Incremental Learning Approach

    Full text link
    Many algorithms in workflow scheduling and resource provisioning rely on the performance estimation of tasks to produce a scheduling plan. A profiler that is capable of modeling the execution of tasks and predicting their runtime accurately, therefore, becomes an essential part of any Workflow Management System (WMS). With the emergence of multi-tenant Workflow as a Service (WaaS) platforms that use clouds for deploying scientific workflows, task runtime prediction becomes more challenging because it requires the processing of a significant amount of data in a near real-time scenario while dealing with the performance variability of cloud resources. Hence, relying on methods such as profiling tasks' execution data using basic statistical description (e.g., mean, standard deviation) or batch offline regression techniques to estimate the runtime may not be suitable for such environments. In this paper, we propose an online incremental learning approach to predict the runtime of tasks in scientific workflows in clouds. To improve the performance of the predictions, we harness fine-grained resources monitoring data in the form of time-series records of CPU utilization, memory usage, and I/O activities that are reflecting the unique characteristics of a task's execution. We compare our solution to a state-of-the-art approach that exploits the resources monitoring data based on regression machine learning technique. From our experiments, the proposed strategy improves the performance, in terms of the error, up to 29.89%, compared to the state-of-the-art solutions.Comment: Accepted for presentation at main conference track of 11th IEEE/ACM International Conference on Utility and Cloud Computin

    Incremental Sparse Bayesian Ordinal Regression

    Get PDF
    Ordinal Regression (OR) aims to model the ordering information between different data categories, which is a crucial topic in multi-label learning. An important class of approaches to OR models the problem as a linear combination of basis functions that map features to a high dimensional non-linear space. However, most of the basis function-based algorithms are time consuming. We propose an incremental sparse Bayesian approach to OR tasks and introduce an algorithm to sequentially learn the relevant basis functions in the ordinal scenario. Our method, called Incremental Sparse Bayesian Ordinal Regression (ISBOR), automatically optimizes the hyper-parameters via the type-II maximum likelihood method. By exploiting fast marginal likelihood optimization, ISBOR can avoid big matrix inverses, which is the main bottleneck in applying basis function-based algorithms to OR tasks on large-scale datasets. We show that ISBOR can make accurate predictions with parsimonious basis functions while offering automatic estimates of the prediction uncertainty. Extensive experiments on synthetic and real word datasets demonstrate the efficiency and effectiveness of ISBOR compared to other basis function-based OR approaches
    • …
    corecore