64,150 research outputs found

    Bayesian Semiparametric Hierarchical Empirical Likelihood Spatial Models

    Full text link
    We introduce a general hierarchical Bayesian framework that incorporates a flexible nonparametric data model specification through the use of empirical likelihood methodology, which we term semiparametric hierarchical empirical likelihood (SHEL) models. Although general dependence structures can be readily accommodated, we focus on spatial modeling, a relatively underdeveloped area in the empirical likelihood literature. Importantly, the models we develop naturally accommodate spatial association on irregular lattices and irregularly spaced point-referenced data. We illustrate our proposed framework by means of a simulation study and through three real data examples. First, we develop a spatial Fay-Herriot model in the SHEL framework and apply it to the problem of small area estimation in the American Community Survey. Next, we illustrate the SHEL model in the context of areal data (on an irregular lattice) through the North Carolina sudden infant death syndrome (SIDS) dataset. Finally, we analyze a point-referenced dataset from the North American Breeding Bird survey that considers dove counts for the state of Missouri. In all cases, we demonstrate superior performance of our model, in terms of mean squared prediction error, over standard parametric analyses.Comment: 29 pages, 3 figue

    Restricted Covariance Priors with Applications in Spatial Statistics

    Get PDF
    We present a Bayesian model for area-level count data that uses Gaussian random effects with a novel type of G-Wishart prior on the inverse variance--covariance matrix. Specifically, we introduce a new distribution called the truncated G-Wishart distribution that has support over precision matrices that lead to positive associations between the random effects of neighboring regions while preserving conditional independence of non-neighboring regions. We describe Markov chain Monte Carlo sampling algorithms for the truncated G-Wishart prior in a disease mapping context and compare our results to Bayesian hierarchical models based on intrinsic autoregression priors. A simulation study illustrates that using the truncated G-Wishart prior improves over the intrinsic autoregressive priors when there are discontinuities in the disease risk surface. The new model is applied to an analysis of cancer incidence data in Washington State.Comment: Published at http://dx.doi.org/10.1214/14-BA927 in the Bayesian Analysis (http://projecteuclid.org/euclid.ba) by the International Society of Bayesian Analysis (http://bayesian.org/

    CARBayes: an R package for Bayesian spatial modeling with conditional autoregressive priors

    Get PDF
    Conditional autoregressive models are commonly used to represent spatial autocorrelation in data relating to a set of non-overlapping areal units, which arise in a wide variety of applications including agriculture, education, epidemiology and image analysis. Such models are typically specified in a hierarchical Bayesian framework, with inference based on Markov chain Monte Carlo (MCMC) simulation. The most widely used software to fit such models is WinBUGS or OpenBUGS, but in this paper we introduce the R package CARBayes. The main advantage of CARBayes compared with the BUGS software is its ease of use, because: (1) the spatial adjacency information is easy to specify as a binary neighbourhood matrix; and (2) given the neighbourhood matrix the models can be implemented by a single function call in R. This paper outlines the general class of Bayesian hierarchical models that can be implemented in the CARBayes software, describes their implementation via MCMC simulation techniques, and illustrates their use with two worked examples in the fields of house price analysis and disease mapping

    A space-time multivariate Bayesian model to analyse road traffic accidents by severity

    Get PDF
    The paper investigates the dependences between levels of severity of road traffic accidents, accounting at the same time for spatial and temporal correlations. The study analyses road traffic accidents data at ward level in England over the period 2005–2013. We include in our model multivariate spatially structured and unstructured effects to capture the dependences between severities, within a Bayesian hierarchical formulation. We also include a temporal component to capture the time effects and we carry out an extensive model comparison. The results show important associations in both spatially structured and unstructured effects between severities, and a downward temporal trend is observed for low and high levels of severity. Maps of posterior accident rates indicate elevated risk within big cities for accidents of low severity and in suburban areas in the north and on the southern coast of England for accidents of high severity. The posterior probability of extreme rates is used to suggest the presence of hot spots in a public health perspective.Areti Boulieri acknowledges support from the National Institute for Health Research and the Medical Research Council Doctoral Training Partnership. Marta Blangiardo acknowledges support from the National Institute for Health Research and the Medical Research Council–Public Health England Centre for Environment and Health. Silvia Liverani acknowledges support from the Leverhulme Trust (grant ECF-2011-576)
    • …
    corecore