4,297 research outputs found

    Ensemble encoding of nociceptive stimulus intensity in the rat medial and lateral pain systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to encode noxious stimulus intensity is essential for the neural processing of pain perception. It is well accepted that the intensity information is transmitted within both sensory and affective pathways. However, it remains unclear what the encoding patterns are in the thalamocortical brain regions, and whether the dual pain systems share similar responsibility in intensity coding.</p> <p>Results</p> <p>Multichannel single-unit recordings were used to investigate the activity of individual neurons and neuronal ensembles in the rat brain following the application of noxious laser stimuli of increasing intensity to the hindpaw. Four brain regions were monitored, including two within the lateral sensory pain pathway, namely, the ventral posterior lateral thalamic nuclei and the primary somatosensory cortex, and two in the medial pathway, namely, the medial dorsal thalamic nuclei and the anterior cingulate cortex. Neuron number, firing rate, and ensemble spike count codings were examined in this study. Our results showed that the noxious laser stimulation evoked double-peak responses in all recorded brain regions. Significant correlations were found between the laser intensity and the number of responsive neurons, the firing rates, as well as the mass spike counts (MSCs). MSC coding was generally more efficient than the other two methods. Moreover, the coding capacities of neurons in the two pathways were comparable.</p> <p>Conclusion</p> <p>This study demonstrated the collective contribution of medial and lateral pathway neurons to the noxious intensity coding. Additionally, we provide evidence that ensemble spike count may be the most reliable method for coding pain intensity in the brain.</p

    Evaluation of behavior in transgenic mouse models to understand human congenital pain conditions

    Full text link
    BACKGROUND: Containing a brain for signal processing and decision making, and a peripheral component for sensation and response, the nervous system provides higher organisms a powerful method of interacting with their environment. The specific neurons involved in pain sensation are known as nociceptors and are the source of normal nociceptive pain signaling to prompt appropriate responses. Though acute hypersensitization can be advantageous by encouraging an organism to allow an injured area to heal, chronic pain conditions can be pathological and can markedly reduce quality of life. While a variety of genes have been associated with congenital pain conditions, two rare cases examined in this study have not had their mutated genes identified. Potassium voltage-gated channel subfamily H member 8, or KCNH8, is involved in regulating action potential production and propagation, and has not been linked with pain processing of any kind to date. Here, a male patient evaluated at Boston Children’s Hospital contains a novel single-base KCNH8 mutation and possesses an extremely low sensitivity to cold temperatures and mechanical pain, but a higher sensitivity to warmer temperatures. A separate protein, intersectin-2, or ITSN2, normally functions in clathrin-mediated endocytosis and exocytosis. A second patient at Boston Children’s Hospital expresses a previously-unseen point mutation in ITSN2 and experiences erythromelalgia, characterized by episodes of intense pain and red, swollen limbs during ambient warm temperatures. Through the use of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 genome editing, this study will produce these specific genetic mutations in mouse lines to explore their effects on mammalian behavior. OBJECTIVES: This project employs two transgenic mouse models to study the behavioral phenotypes associated with rare potentially damaging mutations in KCNH8 and ITSN2 exhibited in the human patients. Through these experiments, a greater understanding of neural pain signaling and sensitivity changes can occur. METHODS: The differences in temperature preference of KCNH8 and ITSN2 mutant mice compared to wild type mice lacking these mutations was studied using thermal plates under cold and warm conditions. Direct application of acetone and von Frey filaments to mouse paws was used to study cold and mechanical sensitivity. Further testing of stamina, anxiety, coordination, and strength were also evaluated. RESULTS: A marked decrease in sensitivity to von Frey stimulation (p<0.01) and acetone administration (p<0.05) was observed in KCNH8 mutant mice. Thermal preference testing demonstrated a decreased preference for warmer temperatures as compared to wild type mice. In addition, anxiety levels were also observed to be slightly higher in these mutant KCNH8 mice (p<0.05). The mutant ITSN2 mice spent less time at cooler temperatures, though surprisingly they significantly preferred warmer conditions as compared to their wild type littermates. A full and partial reversal of these temperature preferences was demonstrated in cold and heat thermal conditions respectively after intraperitoneal gabapentin injection, which normalized the mice toward wild type behavior. CONCLUSIONS: Data from the KCNH8 mutant mouse model indicates an aversion to warmer temperatures and a decreased ability to detect cold or mechanical pressure, much like the human patient. The mutant ITSN2 mice were less likely to spend time at cooler temperatures, indicating heightened sensory sensitivity, but their preference for warmer temperatures suggests a possible desensitization of the affected nociceptors. These results often mirror the patient’s phenotype, but the preference for ambient warmer environments appears opposite to the patient. As the ITSN2 mice feel discomfort at cooler temperatures, a proposed desensitization at warmer temperatures would result in a more comfortable environment and could explain the observed preference. The trends toward normal neural firing rates achieved through gabapentin injection suggest that the aberrant responses in mutant ITSN2 mice is due to altered sensitization, but additional examination under these conditions with a larger group of mice is necessary to further unravel these signaling pathways. However, these extremely encouraging data introduce two new molecular targets for acute pain control

    State Dependence of Stimulus-Induced Variability Tuning in Macaque MT

    Full text link
    Behavioral states marked by varying levels of arousal and attention modulate some properties of cortical responses (e.g. average firing rates or pairwise correlations), yet it is not fully understood what drives these response changes and how they might affect downstream stimulus decoding. Here we show that changes in state modulate the tuning of response variance-to-mean ratios (Fano factors) in a fashion that is neither predicted by a Poisson spiking model nor changes in the mean firing rate, with a substantial effect on stimulus discriminability. We recorded motion-sensitive neurons in middle temporal cortex (MT) in two states: alert fixation and light, opioid anesthesia. Anesthesia tended to lower average spike counts, without decreasing trial-to-trial variability compared to the alert state. Under anesthesia, within-trial fluctuations in excitability were correlated over longer time scales compared to the alert state, creating supra-Poisson Fano factors. In contrast, alert-state MT neurons have higher mean firing rates and largely sub-Poisson variability that is stimulus-dependent and cannot be explained by firing rate differences alone. The absence of such stimulus-induced variability tuning in the anesthetized state suggests different sources of variability between states. A simple model explains state-dependent shifts in the distribution of observed Fano factors via a suppression in the variance of gain fluctuations in the alert state. A population model with stimulus-induced variability tuning and behaviorally constrained information-limiting correlations explores the potential enhancement in stimulus discriminability by the cortical population in the alert state.Comment: 36 pages, 18 figure

    Distinct mechanisms of signal processing by lamina I spino-parabrachial neurons

    Get PDF
    Lamina I spino-parabrachial neurons (SPNs) receive peripheral nociceptive input, process it and transmit to the supraspinal centres. Although responses of SPNs to cutaneous receptive field stimulations have been intensively studied, the mechanisms of signal processing in these neurons are poorly understood. Therefore, we used an ex-vivo spinal cord preparation to examine synaptic and cellular mechanisms determining specific input-output characteristics of the neurons. The vast majority of the SPNs received a few direct nociceptive C-fiber inputs and generated one spike in response to saturating afferent stimulation, thus functioning as simple transducers of painful stimulus. However, 69% of afferent stimulation-induced action potentials in the entire SPN population originated from a small fraction (19%) of high-output neurons. These neurons received a larger number of direct Ad- and C-fiber inputs, generated intrinsic bursts and efficiently integrated a local network activity via NMDA-receptor-dependent mechanisms. The high-output SPNs amplified and integrated the nociceptive input gradually encoding its intensity into the number of generated spikes. Thus, different mechanisms of signal processing allow lamina I SPNs to play distinct roles in nociception.The authors thank Mr. Andrew Dromaretsky for the technical assistance. P.B. was supported by the National Academy of Sciences of Ukraine (NASU), grant NASU # 0116U004470, grant NASU#67/15-Н. N.V. was supported by the NASU Biotechnology and NASU-KNU grants; NIH 1R01NS113189-01. B.V.S. was supported by the FEDER funds through the COMPETE 2020 (POCI), Portugal 2020, and by the FCT project PTDC/NEU-NMC/1259/2014 (POCI-01-0145-FEDER-016588

    Chemotherapy Induced Sensory Neuropathy Depends on Non-Linear Interactions with Cancer

    Get PDF
    For the constellation of neurological disorders known as chemotherapy induced neuropathy, mechanistic understanding, and treatment remain deficient. In project one, I leveraged a multi-scale experimental approach to provide the first evidence that chronic sensory neuropathy depends on non-linear interactions between cancer and chemotherapy. Global transcriptional profiling of dorsal root ganglia revealed amplified differential expression, notably in regulators of neuronal excitability, metabolism and inflammatory responses, all of which were unpredictable from effects observed with either chemotherapy or cancer alone. Systemic interactions between cancer and chemotherapy also determined the extent of deficits in sensory encoding in vivo and ion channel protein expression by single mechanosensory neurons, with the potassium ion channel Kv3.3 emerging as candidate mechanisms explaining sensory neuron dysfunction. The sufficiency of this novel molecular mechanism was tested in an in silico biophysical model of mechanosensory function. Finally, validated measures of sensorimotor behavior in awake behaving animals confirmed that dysfunction after chronic chemotherapy treatment is exacerbated by cancer. Notably, errors in precise fore-limb placement emerged as a novel behavioral deficit unpredicted by our previous study of chemotherapy alone. These original findings identify novel contributors to peripheral neuropathy, and emphasize the fundamental dependence of neuropathy on the systemic interaction between chemotherapy and cancer across multiple levels of biological control. In project two, I extend study to multiple classes of mechanosensory neurons that are necessary for generating the information content (population code) needed for proprioception. I first tested the hypothesis that exacerbated neuronal dysfunction is conserved across multiple classes of mechanosensory neurons. Results revealed co-suppression of specific signaling parameters across all neuronal classes. To understand the consequences of corrupt population code, I employed a long-short-term memory neural network (LSTM), a deep-learning algorithm, to test how decoding of spatiotemporal features of movement are altered after chemotherapy treatment of cancer. Results indicate that spiking activity from the population of neurons in animals with cancer, treated by chemotherapy contain significantly less information about key features of movement including, e.g. timing, magnitudes, and velocity. I then modeled the central nervous systems (CNS) capacity to compensate for this information loss. Even under optimal learning conditions, the inability to fully restore predictive power suggests that the CNS would not be able to compensate and restore full function. Our results support our proposal that lasting deficits in mobility and perception experienced by cancer survivors can originate from sensory information that is corrupted and un-interpretable by CNS neurons or networks. Collectively, I present the first evidence that chronic cancer neuropathy cannot be explained by the effects of chemotherapy alone but instead depend on non-linear interactions with cancer. This understanding is a prerequisite for designing future studies and for developing effective treatments or preventative measures.Ph.D
    corecore