3,661 research outputs found

    Stochastic Multipath Model for the In-Room Radio Channel based on Room Electromagnetics

    Get PDF
    We propose a stochastic multipath model for the received signal for the case where the transmitter and receiver, both with directive antennas, are situated in the same rectangular room. This scenario is known to produce channel impulse responses with a gradual specular-to-diffused transition in delay. Mirror source theory predicts the arrival rate to be quadratic in delay, inversely proportional to room volume and proportional to the product of the antenna beam coverage fractions. We approximate the mirror source positions by a homogeneous spatial Poisson point process and their gain as complex random variables with the same second moment. The multipath delays in the resulting model form an inhomogeneous Poisson point process which enables derivation of the characteristic functional, power/kurtosis delay spectra, and the distribution of order statistics of the arrival delays in closed form. We find that the proposed model matches the mirror source model well in terms of power delay spectrum, kurtosis delay spectrum, order statistics, and prediction of mean delay and rms delay spread. The constant rate model, assumed in e.g. the Saleh-Valenzuela model, is unable to reproduce the same effects.Comment: 14 pages, Manuscript Submitted to IEEE Transaction on Antennas and Propagatio

    Delay Performance of MISO Wireless Communications

    Full text link
    Ultra-reliable, low latency communications (URLLC) are currently attracting significant attention due to the emergence of mission-critical applications and device-centric communication. URLLC will entail a fundamental paradigm shift from throughput-oriented system design towards holistic designs for guaranteed and reliable end-to-end latency. A deep understanding of the delay performance of wireless networks is essential for efficient URLLC systems. In this paper, we investigate the network layer performance of multiple-input, single-output (MISO) systems under statistical delay constraints. We provide closed-form expressions for MISO diversity-oriented service process and derive probabilistic delay bounds using tools from stochastic network calculus. In particular, we analyze transmit beamforming with perfect and imperfect channel knowledge and compare it with orthogonal space-time codes and antenna selection. The effect of transmit power, number of antennas, and finite blocklength channel coding on the delay distribution is also investigated. Our higher layer performance results reveal key insights of MISO channels and provide useful guidelines for the design of ultra-reliable communication systems that can guarantee the stringent URLLC latency requirements.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Estimating the time and angle of arrivals in mobile communications

    Get PDF
    Dans ce projet, nous présentons une méthode nouvelle et précise d’estimation de la direction et des délais d’arrivée dans un environnement à trajets multiples, à des fins d’estimation de canal. Récemment, les méthodes de super-résolution ont été largement utilisées pour l’estimation à haute-résolution de la direction d’arrivée (DOA) ou de la différence de temps d’arrivée (TDOA). L’algorithme proposé dans ce travail est applicable à l’estimation d’un canal espace-temps pour des systèmes de traitement spatio-temporel qui emploient la technologie hybride DOA / TDOA. L’estimateur est basé sur l’algorithme MUSIC classique pour trouver la DOA et en profitant d’un simple corrélateur, il est possible de trouver le retard de chaque arrivée. Il est pertinent d’associer chaque angle à son propre retard pour être capable d’estimer les caractéristiques du canal quand nous ne connaissons pas la séquence transmise par l’émetteur. Pour ce faire, nous proposons une formation de faisceaux (voix) très simple et optimale par l’application du MVDR (Maximum Variance Distortion-less Response). Cette formation de faisceaux maximise le signal desiré par rapport aux autres signaux. Après détermination de l’angle d’arrivée par l’algorithme MUSIC, nous appliquons l’algorithme de formation de faisceaux MVDR pour obtenir le signal qui est reçu par le réseau d’antennes pour une direction. Ce signal est corrélé avec les autres signaux correspondants aux autres directions d’arrivée. Les pics dans les figures ainsi obtenues montrent le décalage temporel de chaque source par rapport à celle obtenue par la formation de faisceaux MVDR. La soustraction du plus petit décalage, correspondant au premier signal reçu à chaque décalage temporel, nous donne le temps d’arrivée de chaque source. Pour être plus précis, nous pouvons choisir la moyenne des vecteurs des délais estimés, chacun étant obtenu à partir d’une angle pour l’algorithme MVDR.In this project, we present a novel and precise way of estimating the direction and delay of arrivals in multipath environment for channel estimation purposes. Recently, super-resolution methods have been widely used for high resolution Direction Of Arrival (DOA) or Time Difference Of Arrival (TDOA) estimation. The proposed algorithm in this work is applicable to space-time channel estimation for space-time processing systems that employ hybrid DOA/TDOA technology. The estimator is based on the conventional MUSIC algorithm to find the DOA and by using a simple correlator it is possible to find the delay of each arrival. It is of interest to associate each angle to its proper delay to be able to estimate the characteristics of the channel when we have no knowledge about the transmitted sequence. To do this, we suggest a very simple and optimal beamforming method by performing Maximum Variance Distortion-less Response (MVDR). This beamforming maximizes the desired signal in the desired direction compare to the other signals that come from other directions. After finding the DOAs by MUSIC algorithm and selecting our desired direction, we obtain the signal from this direction by applying MVDR beamforming. Then, we perform a correlation between this signal and the others incoming signals from other directions. The peaks in the simulation figures illustrate the delay between each source with the obtained signal from MVDR. If we subtract the delay of the first arrival (the smallest delay in time), from the delays indicated in the figures, we can obtain the delay of each arrival. To be more precise, the mean of these estimated TOAs vector follows the exact TOA of each source

    The BARISTA: A model for bid arrivals in online auctions

    Full text link
    The arrival process of bidders and bids in online auctions is important for studying and modeling supply and demand in the online marketplace. A popular assumption in the online auction literature is that a Poisson bidder arrival process is a reasonable approximation. This approximation underlies theoretical derivations, statistical models and simulations used in field studies. However, when it comes to the bid arrivals, empirical research has shown that the process is far from Poisson, with early bidding and last-moment bids taking place. An additional feature that has been reported by various authors is an apparent self-similarity in the bid arrival process. Despite the wide evidence for the changing bidding intensities and the self-similarity, there has been no rigorous attempt at developing a model that adequately approximates bid arrivals and accounts for these features. The goal of this paper is to introduce a family of distributions that well-approximate the bid time distribution in hard-close auctions. We call this the BARISTA process (Bid ARrivals In STAges) because of its ability to generate different intensities at different stages. We describe the properties of this model, show how to simulate bid arrivals from it, and how to use it for estimation and inference. We illustrate its power and usefulness by fitting simulated and real data from eBay.com. Finally, we show how a Poisson bidder arrival process relates to a BARISTA bid arrival process.Comment: Published in at http://dx.doi.org/10.1214/07-AOAS117 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Space Time MUSIC: Consistent Signal Subspace Estimation for Wide-band Sensor Arrays

    Full text link
    Wide-band Direction of Arrival (DOA) estimation with sensor arrays is an essential task in sonar, radar, acoustics, biomedical and multimedia applications. Many state of the art wide-band DOA estimators coherently process frequency binned array outputs by approximate Maximum Likelihood, Weighted Subspace Fitting or focusing techniques. This paper shows that bin signals obtained by filter-bank approaches do not obey the finite rank narrow-band array model, because spectral leakage and the change of the array response with frequency within the bin create \emph{ghost sources} dependent on the particular realization of the source process. Therefore, existing DOA estimators based on binning cannot claim consistency even with the perfect knowledge of the array response. In this work, a more realistic array model with a finite length of the sensor impulse responses is assumed, which still has finite rank under a space-time formulation. It is shown that signal subspaces at arbitrary frequencies can be consistently recovered under mild conditions by applying MUSIC-type (ST-MUSIC) estimators to the dominant eigenvectors of the wide-band space-time sensor cross-correlation matrix. A novel Maximum Likelihood based ST-MUSIC subspace estimate is developed in order to recover consistency. The number of sources active at each frequency are estimated by Information Theoretic Criteria. The sample ST-MUSIC subspaces can be fed to any subspace fitting DOA estimator at single or multiple frequencies. Simulations confirm that the new technique clearly outperforms binning approaches at sufficiently high signal to noise ratio, when model mismatches exceed the noise floor.Comment: 15 pages, 10 figures. Accepted in a revised form by the IEEE Trans. on Signal Processing on 12 February 1918. @IEEE201

    Analysis of and techniques for adaptive equalization for underwater acoustic communication

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2011Underwater wireless communication is quickly becoming a necessity for applications in ocean science, defense, and homeland security. Acoustics remains the only practical means of accomplishing long-range communication in the ocean. The acoustic communication channel is fraught with difficulties including limited available bandwidth, long delay-spread, time-variability, and Doppler spreading. These difficulties reduce the reliability of the communication system and make high data-rate communication challenging. Adaptive decision feedback equalization is a common method to compensate for distortions introduced by the underwater acoustic channel. Limited work has been done thus far to introduce the physics of the underwater channel into improving and better understanding the operation of a decision feedback equalizer. This thesis examines how to use physical models to improve the reliability and reduce the computational complexity of the decision feedback equalizer. The specific topics covered by this work are: how to handle channel estimation errors for the time varying channel, how to use angular constraints imposed by the environment into an array receiver, what happens when there is a mismatch between the true channel order and the estimated channel order, and why there is a performance difference between the direct adaptation and channel estimation based methods for computing the equalizer coefficients. For each of these topics, algorithms are provided that help create a more robust equalizer with lower computational complexity for the underwater channel.This work would not have been possible without support from the O ce of Naval Research, through a Special Research Award in Acoustics Graduate Fellowship (ONR Grant #N00014-09-1-0540), with additional support from ONR Grant #N00014-05- 10085 and ONR Grant #N00014-07-10184
    • …
    corecore