2,897 research outputs found

    Evidence that natural selection maintains genetic variation for sleep in Drosophila melanogaster.

    Get PDF
    BackgroundDrosophila melanogaster often shows correlations between latitude and phenotypic or genetic variation on different continents, which suggests local adaptation with respect to a heterogeneous environment. Previous phenotypic analyses of latitudinal clines have investigated mainly physiological, morphological, or life-history traits. Here, we studied latitudinal variation in sleep in D. melanogaster populations from North and Central America. In parallel, we used RNA-seq to identify interpopulation gene expression differences.ResultsWe found that in D. melanogaster the average nighttime sleep bout duration exhibits a latitudinal cline such that sleep bouts of equatorial populations are roughly twice as long as those of temperate populations. Interestingly, this pattern of latitudinal variation is not observed for any daytime measure of activity or sleep. We also found evidence for geographic variation for sunrise anticipation. Our RNA-seq experiment carried out on heads from a low and high latitude population identified a large number of gene expression differences, most of which were time dependent. Differentially expressed genes were enriched in circadian regulated genes and enriched in genes potentially under spatially varying selection.ConclusionOur results are consistent with a mechanistic and selective decoupling of nighttime and daytime activity. Furthermore, the present study suggests that natural selection plays a major role in generating transcriptomic variation associated with circadian behaviors. Finally, we identified genomic variants plausibly causally associated with the observed behavioral and transcriptomic variation

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 190, February 1979

    Get PDF
    This bibliography lists 235 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1979

    Deciphering Chronometabolic Dynamics Through Metabolomics, Stable Isotope Tracers, And Genome-Scale Reaction Modeling

    Get PDF
    Synchrony across environmental cues, endogenous genetic clocks, sleep/wake cycles, and metabolism evoke physiological harmony for organismal health. Perturbation of this synchrony has been recently correlated with a growing list of pathologies, which is alarming given the ubiquity of sleep deprivation, mistimed light exposure, and altered eating schedules in modern society. Deeper insights into clocks, sleep, and metabolism are necessary to understand these outcomes. In this work, extensive metabolic profiles of circadian systems were obtained from the development of new liquid chromatography mass spectrometry (LC-MS) metabolomics methods. These methods were applied to Drosophila melanogaster to discern relative influences of environmental and genetic drivers of metabolic cycles. Unique sets of metabolites oscillated with 24-hour circadian periods under light:dark (LD) and constant darkness (DD) conditions, and ultradian rhythms were noted for clock mutant flies under LD, suggesting clock-independent metabolic cycles driven by environmental inputs. However, this metabolomic analysis does not fully capture the inherently dynamic nature of circadian metabolism. These LC-MS methods were adapted to analyze isotope enrichments from a novel 13C6 glucose injection platform in Drosophila. Metabolic flux cycles were noted from glucose carbons into serine, glutamine and reduced glutathione biosynthesis, and altered under sleep deprivation, demonstrating unique energy and redox demands in perturbed sleep/wake cycles. Global isotopolome shifts were most notable in WT flies after lights-on, suggesting a catabolic rush from glucose oxidation early in the active phase. As the scope of these isotope tracer-based metabolomic analyses expand, attributing labeling patterns to specific reactions requires consideration of genome-scale metabolic networks. A new computational approach was developed, called the IsoPathFinder, which uncovered biosynthetic paths from glucose to serine, and extends to glycine and glutathione production. Carbon flux into glutamine was predicted to occur through the TCA cycle, supported by enzyme thermodynamics and circadian expression datasets. This tool is presented as a new mechanism to simulate additional isotope tracer experiments, with broad applicability beyond circadian research. Collectively, a new set of analytical and computational tools are developed to both produce dynamic metabolomic data and improve data interpretability, with applications to uncover new chronometabolic connections

    Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock.

    Get PDF
    Posttranslational modifications play central roles in myriad biological pathways including circadian regulation. We employed a circadian proteomic approach to demonstrate that circadian timing of phosphorylation is a critical factor in regulating complex GSK3β-dependent pathways and identified O-GlcNAc transferase (OGT) as a substrate of GSK3β. Interestingly, OGT activity is regulated by GSK3β; hence, OGT and GSK3β exhibit reciprocal regulation. Modulating O-GlcNAcylation levels alter circadian period length in both mice and Drosophila; conversely, protein O-GlcNAcylation is circadianly regulated. Central clock proteins, Clock and Period, are reversibly modified by O-GlcNAcylation to regulate their transcriptional activities. In addition, O-GlcNAcylation of a region in PER2 known to regulate human sleep phase (S662-S674) competes with phosphorylation of this region, and this interplay is at least partly mediated by glucose levels. Together, these results indicate that O-GlcNAcylation serves as a metabolic sensor for clock regulation and works coordinately with phosphorylation to fine-tune circadian clock

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 199

    Get PDF
    This bibliography lists 82 reports, articles, and other documents introduced into the NASA scientific and technical information system in October 1979

    Structural Analysis and Deletion Mutagenesis Define Regions of QUIVER/SLEEPLESS that Are Responsible for Interactions with Shaker-Type Potassium Channels and Nicotinic Acetylcholine Receptors.

    Get PDF
    Ly6 proteins are endogenous prototoxins found in most animals. They show striking structural and functional parallels to snake α-neurotoxins, including regulation of ion channels and cholinergic signaling. However, the structural contributions of Ly6 proteins to regulation of effector molecules is poorly understood. This question is particularly relevant to the Ly6 protein QUIVER/SLEEPLESS (QVR/SSS), which has previously been shown to suppress excitability and synaptic transmission by upregulating potassium (K) channels and downregulating nicotinic acetylcholine receptors (nAChRs) in wake-promoting neurons to facilitate sleep in Drosophila. Using deletion mutagenesis, co-immunoprecipitations, ion flux assays, surface labeling and confocal microscopy, we demonstrate that only loop 2 is required for many of the previously described properties of SSS in transfected cells, including interactions with K channels and nAChRs. Collectively our data suggest that QVR/SSS, and by extension perhaps other Ly6 proteins, target effector molecules using limited protein motifs. Mapping these motifs may be useful in rational design of drugs that mimic or suppress Ly6-effector interactions to modulate nervous system function

    A PERIOD3 variant causes a circadian phenotype and is associated with a seasonal mood trait.

    Get PDF
    In humans, the connection between sleep and mood has long been recognized, although direct molecular evidence is lacking. We identified two rare variants in the circadian clock gene PERIOD3 (PER3-P415A/H417R) in humans with familial advanced sleep phase accompanied by higher Beck Depression Inventory and seasonality scores. hPER3-P415A/H417R transgenic mice showed an altered circadian period under constant light and exhibited phase shifts of the sleep-wake cycle in a short light period (photoperiod) paradigm. Molecular characterization revealed that the rare variants destabilized PER3 and failed to stabilize PERIOD1/2 proteins, which play critical roles in circadian timing. Although hPER3-P415A/H417R-Tg mice showed a mild depression-like phenotype, Per3 knockout mice demonstrated consistent depression-like behavior, particularly when studied under a short photoperiod, supporting a possible role for PER3 in mood regulation. These findings suggest that PER3 may be a nexus for sleep and mood regulation while fine-tuning these processes to adapt to seasonal changes
    corecore