85 research outputs found

    Noise-Tolerant Learning, the Parity Problem, and the Statistical Query Model

    Full text link
    We describe a slightly sub-exponential time algorithm for learning parity functions in the presence of random classification noise. This results in a polynomial-time algorithm for the case of parity functions that depend on only the first O(log n log log n) bits of input. This is the first known instance of an efficient noise-tolerant algorithm for a concept class that is provably not learnable in the Statistical Query model of Kearns. Thus, we demonstrate that the set of problems learnable in the statistical query model is a strict subset of those problems learnable in the presence of noise in the PAC model. In coding-theory terms, what we give is a poly(n)-time algorithm for decoding linear k by n codes in the presence of random noise for the case of k = c log n loglog n for some c > 0. (The case of k = O(log n) is trivial since one can just individually check each of the 2^k possible messages and choose the one that yields the closest codeword.) A natural extension of the statistical query model is to allow queries about statistical properties that involve t-tuples of examples (as opposed to single examples). The second result of this paper is to show that any class of functions learnable (strongly or weakly) with t-wise queries for t = O(log n) is also weakly learnable with standard unary queries. Hence this natural extension to the statistical query model does not increase the set of weakly learnable functions

    Specification and Simulation of Statistical Query Algorithms for Efficiency and Noise Tolerance

    Get PDF
    AbstractA recent innovation in computational learning theory is the statistical query (SQ) model. The advantage of specifying learning algorithms in this model is that SQ algorithms can be simulated in the probably approximately correct (PAC) model, both in the absenceandin the presence of noise. However, simulations of SQ algorithms in the PAC model have non-optimal time and sample complexities. In this paper, we introduce a new method for specifying statistical query algorithms based on a type ofrelative errorand provide simulations in the noise-free and noise-tolerant PAC models which yield more efficient algorithms. Requests for estimates of statistics in this new model take the following form: “Return an estimate of the statistic within a 1±μfactor, or return ⊥, promising that the statistic is less thanθ.” In addition to showing that this is a very natural language for specifying learning algorithms, we also show that this new specification is polynomially equivalent to standard SQ, and thus, known learnability and hardness results for statistical query learning are preserved. We then give highly efficient PAC simulations of relative error SQ algorithms. We show that the learning algorithms obtained by simulating efficient relative error SQ algorithms both in the absence of noise and in the presence of malicious noise have roughly optimal sample complexity. We also show that the simulation of efficient relative error SQ algorithms in the presence of classification noise yields learning algorithms at least as efficient as those obtained through standard methods, and in some cases improved, roughly optimal results are achieved. The sample complexities for all of these simulations are based on thedνmetric, which is a type of relative error metric useful for quantities which are small or even zero. We show that uniform convergence with respect to thedνmetric yields “uniform convergence” with respect to (μ, θ) accuracy. Finally, while we show that manyspecificlearning algorithms can be written as highly efficient relative error SQ algorithms, we also show, in fact, thatallSQ algorithms can be written efficiently by proving general upper bounds on the complexity of (μ, θ) queries as a function of the accuracy parameterε. As a consequence of this result, we give general upper bounds on the complexity of learning algorithms achieved through the use of relative error SQ algorithms and the simulations described above

    Multi armed bandits and quantum channel oracles

    Full text link
    Multi armed bandits are one of the theoretical pillars of reinforcement learning. Recently, the investigation of quantum algorithms for multi armed bandit problems was started, and it was found that a quadratic speed-up is possible when the arms and the randomness of the rewards of the arms can be queried in superposition. Here we introduce further bandit models where we only have limited access to the randomness of the rewards, but we can still query the arms in superposition. We show that this impedes any speed-up of quantum algorithms.Comment: 44 page

    Learning Possibilistic Logic Theories

    Get PDF
    Vi tar opp problemet med å lære tolkbare maskinlæringsmodeller fra usikker og manglende informasjon. Vi utvikler først en ny dyplæringsarkitektur, RIDDLE: Rule InDuction with Deep LEarning (regelinduksjon med dyp læring), basert på egenskapene til mulighetsteori. Med eksperimentelle resultater og sammenligning med FURIA, en eksisterende moderne metode for regelinduksjon, er RIDDLE en lovende regelinduksjonsalgoritme for å finne regler fra data. Deretter undersøker vi læringsoppgaven formelt ved å identifisere regler med konfidensgrad knyttet til dem i exact learning-modellen. Vi definerer formelt teoretiske rammer og viser forhold som må holde for å garantere at en læringsalgoritme vil identifisere reglene som holder i et domene. Til slutt utvikler vi en algoritme som lærer regler med tilhørende konfidensverdier i exact learning-modellen. Vi foreslår også en teknikk for å simulere spørringer i exact learning-modellen fra data. Eksperimenter viser oppmuntrende resultater for å lære et sett med regler som tilnærmer reglene som er kodet i data.We address the problem of learning interpretable machine learning models from uncertain and missing information. We first develop a novel deep learning architecture, named RIDDLE (Rule InDuction with Deep LEarning), based on properties of possibility theory. With experimental results and comparison with FURIA, a state of the art method, RIDDLE is a promising rule induction algorithm for finding rules from data. We then formally investigate the learning task of identifying rules with confidence degree associated to them in the exact learning model. We formally define theoretical frameworks and show conditions that must hold to guarantee that a learning algorithm will identify the rules that hold in a domain. Finally, we develop an algorithm that learns rules with associated confidence values in the exact learning model. We also propose a technique to simulate queries in the exact learning model from data. Experiments show encouraging results to learn a set of rules that approximate rules encoded in data.Doktorgradsavhandlin

    Robust Learning under Strong Noise via {SQs}

    Get PDF
    This work provides several new insights on the robustness of Kearns' statistical query framework against challenging label-noise models. First, we build on a recent result by \cite{DBLP:journals/corr/abs-2006-04787} that showed noise tolerance of distribution-independently evolvable concept classes under Massart noise. Specifically, we extend their characterization to more general noise models, including the Tsybakov model which considerably generalizes the Massart condition by allowing the flipping probability to be arbitrarily close to 12\frac{1}{2} for a subset of the domain. As a corollary, we employ an evolutionary algorithm by \cite{DBLP:conf/colt/KanadeVV10} to obtain the first polynomial time algorithm with arbitrarily small excess error for learning linear threshold functions over any spherically symmetric distribution in the presence of spherically symmetric Tsybakov noise. Moreover, we posit access to a stronger oracle, in which for every labeled example we additionally obtain its flipping probability. In this model, we show that every SQ learnable class admits an efficient learning algorithm with OPT + ϵ\epsilon misclassification error for a broad class of noise models. This setting substantially generalizes the widely-studied problem of classification under RCN with known noise rate, and corresponds to a non-convex optimization problem even when the noise function -- i.e. the flipping probabilities of all points -- is known in advance

    Noise tolerant algorithms for learning and searching

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Includes bibliographical references (p. 109-112).by Javed Alexander Aslam.Ph.D
    corecore