5 research outputs found

    HAPS Gateway Link in the 5850-7075 MHz and Coexistence with Fixed Satellite Service

    Get PDF
    Gateway link is essential to connect HAPS platform to terrestrial based networks. This crucial link is incorporated in HAPS fixed service spectrum allocation in considerably high frequencies, renders the link for more attenuations by atmospheric gases, and rain effects, especially when the regional climate is not favorable. However, under the agenda item 1.20 of World Radio Conference-2012 (WRC-12) new HAPS allocation in the 5850-7075 MHz band is proposed. Although, spectrum features are incomparably reliable, on the contrary, Fixed Satellite Service (FSS) uplink transmissions will have signal levels much higher than those in HAPS systems and have the potential for causing interference at the HAPS gateway receiver. In this article a key aspect of co-channel interference phenomena is investigated to facilitate optimum frequency sharing in the band in question. By proposing mitigation techniques and statistical method this generic prediction model enhances the capability of the HAPS spectrum sharing and provides flexibility in spectrum planning for different fixed services

    Spectrum Sharing of HAPS and Fixed Link in Millimeter Waves

    Get PDF
    A High Altitude Platform System (HAPS) is an emerging technology that can potentially bring connectivity to areas that are not partially or totally covered by cellular networks. However, allocating certain frequency bands for the HAPS alongside wireless Fixed Service (FS) imposes some restrictions on operating the HAPS systems to ensure no interference occurs between the two systems (HAPS and FS). This paper presents an analytical study of the spectrum sharing between the HAPS and the FS in millimeter waves, namely in 38- and 47-GHz bands. Some potential and significant interference scenarios have been applied in order to investigate the spectrum-sharing situations in urban and suburban areas. The Carrier to Interference plus Noise Ratio (CINR) has been adopted as the main criterion to assess the performance of the HAPS. It is found that the HAPS and FS systems can simultaneously share the 38- and 47-GHz bands with some restrictions to HAPS altitude, allowable CINR, and location of the HAPS user. These restrictions differ depending on the area coverage type

    A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future

    Full text link
    A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).Comment: To appear in IEEE Communications Surveys & Tutorial
    corecore