66,518 research outputs found

    Parametric Macromodels of Differential Drivers and Receivers

    Get PDF
    This paper addresses the modeling of differential drivers and receivers for the analog simulation of high-speed interconnection systems. The proposed models are based on mathematical expressions, whose parameters can be estimated from the transient responses of the modeled devices. The advantages of this macromodeling approach are: improved accuracy with respect to models based on simplified equivalent circuits of devices; improved numerical efficiency with respect to detailed transistor-level models of devices; hiding of the internal structure of devices; straightforward circuit interpretation; or implementations in analog mixed-signal simulators. The proposed methodology is demonstrated on example devices and is applied to the prediction of transient waveforms and eye diagrams of a typical low-voltage differential signaling (LVDS) data link

    A VHDL-AMS Simulation Environment for an UWB Impulse Radio Transceiver

    Get PDF
    Ultra-Wide-Band (UWB) communication based on the impulse radio paradigm is becoming increasingly popular. According to the IEEE 802.15 WPAN Low Rate Alternative PHY Task Group 4a, UWB will play a major role in localization applications, due to the high time resolution of UWB signals which allow accurate indirect measurements of distance between transceivers. Key for the successful implementation of UWB transceivers is the level of integration that will be reached, for which a simulation environment that helps take appropriate design decisions is crucial. Owing to this motivation, in this paper we propose a multiresolution UWB simulation environment based on the VHDL-AMS hardware description language, along with a proper methodology which helps tackle the complexity of designing a mixed-signal UWB System-on-Chip. We applied the methodology and used the simulation environment for the specification and design of an UWB transceiver based on the energy detection principle. As a by-product, simulation results show the effectiveness of UWB in the so-called ranging application, that is the accurate evaluation of the distance between a couple of transceivers using the two-way-ranging metho

    Exploratory Mediation Analysis with Many Potential Mediators

    Full text link
    Social and behavioral scientists are increasingly employing technologies such as fMRI, smartphones, and gene sequencing, which yield 'high-dimensional' datasets with more columns than rows. There is increasing interest, but little substantive theory, in the role the variables in these data play in known processes. This necessitates exploratory mediation analysis, for which structural equation modeling is the benchmark method. However, this method cannot perform mediation analysis with more variables than observations. One option is to run a series of univariate mediation models, which incorrectly assumes independence of the mediators. Another option is regularization, but the available implementations may lead to high false positive rates. In this paper, we develop a hybrid approach which uses components of both filter and regularization: the 'Coordinate-wise Mediation Filter'. It performs filtering conditional on the other selected mediators. We show through simulation that it improves performance over existing methods. Finally, we provide an empirical example, showing how our method may be used for epigenetic research.Comment: R code and package are available online as supplementary material at https://github.com/vankesteren/cmfilter and https://github.com/vankesteren/ema_simulation

    Finding Structural Information of RF Power Amplifiers using an Orthogonal Non-Parametric Kernel Smoothing Estimator

    Full text link
    A non-parametric technique for modeling the behavior of power amplifiers is presented. The proposed technique relies on the principles of density estimation using the kernel method and is suited for use in power amplifier modeling. The proposed methodology transforms the input domain into an orthogonal memory domain. In this domain, non-parametric static functions are discovered using the kernel estimator. These orthogonal, non-parametric functions can be fitted with any desired mathematical structure, thus facilitating its implementation. Furthermore, due to the orthogonality, the non-parametric functions can be analyzed and discarded individually, which simplifies pruning basis functions and provides a tradeoff between complexity and performance. The results show that the methodology can be employed to model power amplifiers, therein yielding error performance similar to state-of-the-art parametric models. Furthermore, a parameter-efficient model structure with 6 coefficients was derived for a Doherty power amplifier, therein significantly reducing the deployment's computational complexity. Finally, the methodology can also be well exploited in digital linearization techniques.Comment: Matlab sample code (15 MB): https://dl.dropboxusercontent.com/u/106958743/SampleMatlabKernel.zi

    Brain-mediated Transfer Learning of Convolutional Neural Networks

    Full text link
    The human brain can effectively learn a new task from a small number of samples, which indicate that the brain can transfer its prior knowledge to solve tasks in different domains. This function is analogous to transfer learning (TL) in the field of machine learning. TL uses a well-trained feature space in a specific task domain to improve performance in new tasks with insufficient training data. TL with rich feature representations, such as features of convolutional neural networks (CNNs), shows high generalization ability across different task domains. However, such TL is still insufficient in making machine learning attain generalization ability comparable to that of the human brain. To examine if the internal representation of the brain could be used to achieve more efficient TL, we introduce a method for TL mediated by human brains. Our method transforms feature representations of audiovisual inputs in CNNs into those in activation patterns of individual brains via their association learned ahead using measured brain responses. Then, to estimate labels reflecting human cognition and behavior induced by the audiovisual inputs, the transformed representations are used for TL. We demonstrate that our brain-mediated TL (BTL) shows higher performance in the label estimation than the standard TL. In addition, we illustrate that the estimations mediated by different brains vary from brain to brain, and the variability reflects the individual variability in perception. Thus, our BTL provides a framework to improve the generalization ability of machine-learning feature representations and enable machine learning to estimate human-like cognition and behavior, including individual variability
    • …
    corecore