1,057 research outputs found

    Q-learning with Nearest Neighbors

    Full text link
    We consider model-free reinforcement learning for infinite-horizon discounted Markov Decision Processes (MDPs) with a continuous state space and unknown transition kernel, when only a single sample path under an arbitrary policy of the system is available. We consider the Nearest Neighbor Q-Learning (NNQL) algorithm to learn the optimal Q function using nearest neighbor regression method. As the main contribution, we provide tight finite sample analysis of the convergence rate. In particular, for MDPs with a dd-dimensional state space and the discounted factor γ∈(0,1)\gamma \in (0,1), given an arbitrary sample path with "covering time" L L , we establish that the algorithm is guaranteed to output an ε\varepsilon-accurate estimate of the optimal Q-function using O~(L/(ε3(1−γ)7))\tilde{O}\big(L/(\varepsilon^3(1-\gamma)^7)\big) samples. For instance, for a well-behaved MDP, the covering time of the sample path under the purely random policy scales as O~(1/εd), \tilde{O}\big(1/\varepsilon^d\big), so the sample complexity scales as O~(1/εd+3).\tilde{O}\big(1/\varepsilon^{d+3}\big). Indeed, we establish a lower bound that argues that the dependence of Ω~(1/εd+2) \tilde{\Omega}\big(1/\varepsilon^{d+2}\big) is necessary.Comment: Accepted to NIPS 201
    • …
    corecore