476 research outputs found

    Exploiting Nanoelectronic Properties of Memory Chips for Prevention of IC Counterfeiting

    Full text link
    This study presents a methodology for anticounterfeiting of Non-Volatile Memory (NVM) chips. In particular, we experimentally demonstrate a generalized methodology for detecting (i) Integrated Circuit (IC) origin, (ii) recycled or used NVM chips, and (iii) identification of used locations (addresses) in the chip. Our proposed methodology inspects latency and variability signatures of Commercial-Off-The-Shelf (COTS) NVM chips. The proposed technique requires low-cycle (~100) pre-conditioning and utilizes Machine Learning (ML) algorithms. We observe different trends in evolution of latency (sector erase or page write) with cycling on different NVM technologies from different vendors. ML assisted approach is utilized for detecting IC manufacturers with 95.1 % accuracy obtained on prepared test dataset consisting of 3 different NVM technologies including 6 different manufacturers (9 types of chips).Comment: 5 pages, 5 figures, accepted in IEEE NANO 202

    Software-Managed Read and Write Wear-Leveling for Non-Volatile Main Memory

    Get PDF
    In-memory wear-leveling has become an important research field for emerging non-volatile main memories over the past years. Many approaches in the literature perform wear-leveling by making use of special hardware. Since most non-volatile memories only wear out from write accesses, the proposed approaches in the literature also usually try to spread write accesses widely over the entire memory space. Some non-volatile memories, however, also wear out from read accesses, because every read causes a consecutive write access. Software-based solutions only operate from the application or kernel level, where read and write accesses are realized with different instructions and semantics. Therefore different mechanisms are required to handle reads and writes on the software level. First, we design a method to approximate read and write accesses to the memory to allow aging aware coarse-grained wear-leveling in the absence of special hardware, providing the age information. Second, we provide specific solutions to resolve access hot-spots within the compiled program code (text segment) and on the application stack. In our evaluation, we estimate the cell age by counting the total amount of accesses per cell. The results show that employing all our methods improves the memory lifetime by up to a factor of 955×

    Novel Cryptographic Authentication Mechanisms for Supply Chains and OpenStack

    Get PDF
    In this dissertation, first, we studied the Radio-Frequency Identification (RFID) tag authentication problem in supply chains. RFID tags have been widely used as a low-cost wireless method for detecting counterfeit product injection in supply chains. We open a new direction toward solving this problem by using the Non-Volatile Memory (NVM) of recent RFID tags. We propose a method based on this direction that significantly improves the availability of the system and costs less. In our method, we introduce the notion of Software Unclonability, which is a kind of one-time MAC for authenticating random inputs. Also, we introduce three lightweight constructions that are software unclonable. Second, we focus on OpenStack that is a prestigious open-source cloud platform. OpenStack takes advantage of some tokening mechanisms to establish trust between its modules and users. It turns out that when an adversary captures user tokens by exploiting a bug in a module, he gets extreme power on behalf of users. Here, we propose a novel tokening mechanism that ties commands to tokens and enables OpenStack to support short life tokens while it keeps the performance up

    Accelerating Time Series Analysis via Processing using Non-Volatile Memories

    Full text link
    Time Series Analysis (TSA) is a critical workload for consumer-facing devices. Accelerating TSA is vital for many domains as it enables the extraction of valuable information and predict future events. The state-of-the-art algorithm in TSA is the subsequence Dynamic Time Warping (sDTW) algorithm. However, sDTW's computation complexity increases quadratically with the time series' length, resulting in two performance implications. First, the amount of data parallelism available is significantly higher than the small number of processing units enabled by commodity systems (e.g., CPUs). Second, sDTW is bottlenecked by memory because it 1) has low arithmetic intensity and 2) incurs a large memory footprint. To tackle these two challenges, we leverage Processing-using-Memory (PuM) by performing in-situ computation where data resides, using the memory cells. PuM provides a promising solution to alleviate data movement bottlenecks and exposes immense parallelism. In this work, we present MATSA, the first MRAM-based Accelerator for Time Series Analysis. The key idea is to exploit magneto-resistive memory crossbars to enable energy-efficient and fast time series computation in memory. MATSA provides the following key benefits: 1) it leverages high levels of parallelism in the memory substrate by exploiting column-wise arithmetic operations, and 2) it significantly reduces the data movement costs performing computation using the memory cells. We evaluate three versions of MATSA to match the requirements of different environments (e.g., embedded, desktop, or HPC computing) based on MRAM technology trends. We perform a design space exploration and demonstrate that our HPC version of MATSA can improve performance by 7.35x/6.15x/6.31x and energy efficiency by 11.29x/4.21x/2.65x over server CPU, GPU and PNM architectures, respectively

    Memristive Non-Volatile Memory Based on Graphene Materials

    Get PDF
    Resistive random access memory (RRAM), which is considered as one of the most promising next-generation non-volatile memory (NVM) devices and a representative of memristor technologies, demonstrated great potential in acting as an artificial synapse in the industry of neuromorphic systems and artificial intelligence (AI), due its advantages such as fast operation speed, low power consumption, and high device density. Graphene and related materials (GRMs), especially graphene oxide (GO), acting as active materials for RRAM devices, are considered as a promising alternative to other materials including metal oxides and perovskite materials. Herein, an overview of GRM-based RRAM devices is provided, with discussion about the properties of GRMs, main operation mechanisms for resistive switching (RS) behavior, figure of merit (FoM) summary, and prospect extension of GRM-based RRAM devices. With excellent physical and chemical advantages like intrinsic Young’s modulus (1.0 TPa), good tensile strength (130 GPa), excellent carrier mobility (2.0 × 105 cm2∙V−1∙s−1), and high thermal (5000 Wm−1∙K−1) and superior electrical conductivity (1.0 × 106 S∙m−1), GRMs can act as electrodes and resistive switching media in RRAM devices. In addition, the GRM-based interface between electrode and dielectric can have an effect on atomic diffusion limitation in dielectric and surface effect suppression. Immense amounts of concrete research indicate that GRMs might play a significant role in promoting the large-scale commercialization possibility of RRAM devices
    • …
    corecore