191,162 research outputs found

    Near-infrared parameters extraction: A potential method to detect skin cancer

    Full text link
    The wavelength-dependent absorption coefficients can be used to analyse optical properties of human skin. Existing absorption models for narrow ranges in the visible and near infrared are insufficient to simultaneously incorporate the spectral contrast produced by differences in chromophores, water and lipid content of skin tissue into skin cancer detection. In the broad range up to 1600 nm, recent analysis approaches for absorption spectra do not consistently provide significant differences between healthy and cancerous skins. We propose an absorption model to fit the absorption coefficient spectra of skin samples over the range from 400 nm to 1600 nm and an advanced algorithm to find the optimal estimation. The extracted parameters of this model are analysed by a statistical t-test. The test results demonstrate the significant differences between all pairs of tumour-normal skin. Therefore, our approach has strong potential for early skin cancer detection using near infrared spectroscopy (NIRS). © 2013 IEEE

    What impacts skin color in digital photos?

    Get PDF
    Skin colors are important for a broad range of imaging applications to assure quality and naturalness. We discuss the impact of various metadata on skin colors in images, i.e. how does the presence of a metadata attribute influence the expected skin color distribution for a given image. For this purpose we employ a statistical framework to automatically build color models from image datasets crawled from the web. We assess both technical and semantic metadata and show that semantic metadata has a more significant impact. This suggests that semantic metadata holds important cues for processing of skin colors. Further we demonstrate that the refined skin color models from our automatic framework improve the accuracy of skin detection

    A hybrid technique for face detection in color images

    Get PDF
    In this paper, a hybrid technique for face detection in color images is presented. The proposed technique combines three analysis models, namely skin detection, automatic eye localization, and appearance-based face/nonface classification. Using a robust histogram-based skin detection model, skin-like pixels are first identified in the RGB color space. Based on this, face bounding-boxes are extracted from the image. On detecting a face bounding-box, approximate positions of the candidate mouth feature points are identified using the redness property of image pixels. A region-based eye localization step, based on the detected mouth feature points, is then applied to face bounding-boxes to locate possible eye feature points in the image. Based on the distance between the detected eye feature points, face/non-face classification is performed over a normalized search area using the Bayesian discriminating feature (BDF) analysis method. Some subjective evaluation results are presented on images taken using digital cameras and a Webcam, representing both indoor and outdoor scenes

    Fair comparison of skin detection approaches on publicly available datasets

    Full text link
    Skin detection is the process of discriminating skin and non-skin regions in a digital image and it is widely used in several applications ranging from hand gesture analysis to track body parts and face detection. Skin detection is a challenging problem which has drawn extensive attention from the research community, nevertheless a fair comparison among approaches is very difficult due to the lack of a common benchmark and a unified testing protocol. In this work, we investigate the most recent researches in this field and we propose a fair comparison among approaches using several different datasets. The major contributions of this work are an exhaustive literature review of skin color detection approaches, a framework to evaluate and combine different skin detector approaches, whose source code is made freely available for future research, and an extensive experimental comparison among several recent methods which have also been used to define an ensemble that works well in many different problems. Experiments are carried out in 10 different datasets including more than 10000 labelled images: experimental results confirm that the best method here proposed obtains a very good performance with respect to other stand-alone approaches, without requiring ad hoc parameter tuning. A MATLAB version of the framework for testing and of the methods proposed in this paper will be freely available from https://github.com/LorisNann

    Automatic skin segmentation for gesture recognition combining region and support vector machine active learning

    Get PDF
    Skin segmentation is the cornerstone of many applications such as gesture recognition, face detection, and objectionable image filtering. In this paper, we attempt to address the skin segmentation problem for gesture recognition. Initially, given a gesture video sequence, a generic skin model is applied to the first couple of frames to automatically collect the training data. Then, an SVM classifier based on active learning is used to identify the skin pixels. Finally, the results are improved by incorporating region segmentation. The proposed algorithm is fully automatic and adaptive to different signers. We have tested our approach on the ECHO database. Comparing with other existing algorithms, our method could achieve better performance

    Classification of Humans into Ayurvedic Prakruti Types using Computer Vision

    Get PDF
    Ayurveda, a 5000 years old Indian medical science, believes that the universe and hence humans are made up of five elements namely ether, fire, water, earth, and air. The three Doshas (Tridosha) Vata, Pitta, and Kapha originated from the combinations of these elements. Every person has a unique combination of Tridosha elements contributing to a person’s ‘Prakruti’. Prakruti governs the physiological and psychological tendencies in all living beings as well as the way they interact with the environment. This balance influences their physiological features like the texture and colour of skin, hair, eyes, length of fingers, the shape of the palm, body frame, strength of digestion and many more as well as the psychological features like their nature (introverted, extroverted, calm, excitable, intense, laidback), and their reaction to stress and diseases. All these features are coded in the constituents at the time of a person’s creation and do not change throughout their lifetime. Ayurvedic doctors analyze the Prakruti of a person either by assessing the physical features manually and/or by examining the nature of their heartbeat (pulse). Based on this analysis, they diagnose, prevent and cure the disease in patients by prescribing precision medicine. This project focuses on identifying Prakruti of a person by analysing his facial features like hair, eyes, nose, lips and skin colour using facial recognition techniques in computer vision. This is the first of its kind research in this problem area that attempts to bring image processing into the domain of Ayurveda

    Universal in vivo Textural Model for Human Skin based on Optical Coherence Tomograms

    Full text link
    Currently, diagnosis of skin diseases is based primarily on visual pattern recognition skills and expertise of the physician observing the lesion. Even though dermatologists are trained to recognize patterns of morphology, it is still a subjective visual assessment. Tools for automated pattern recognition can provide objective information to support clinical decision-making. Noninvasive skin imaging techniques provide complementary information to the clinician. In recent years, optical coherence tomography has become a powerful skin imaging technique. According to specific functional needs, skin architecture varies across different parts of the body, as do the textural characteristics in OCT images. There is, therefore, a critical need to systematically analyze OCT images from different body sites, to identify their significant qualitative and quantitative differences. Sixty-three optical and textural features extracted from OCT images of healthy and diseased skin are analyzed and in conjunction with decision-theoretic approaches used to create computational models of the diseases. We demonstrate that these models provide objective information to the clinician to assist in the diagnosis of abnormalities of cutaneous microstructure, and hence, aid in the determination of treatment. Specifically, we demonstrate the performance of this methodology on differentiating basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) from healthy tissue
    corecore