23,687 research outputs found

    Maximum Likelihood Estimation for Single Particle, Passive Microrheology Data with Drift

    Get PDF
    Volume limitations and low yield thresholds of biological fluids have led to widespread use of passive microparticle rheology. The mean-squared-displacement (MSD) statistics of bead position time series (bead paths) are either applied directly to determine the creep compliance [Xu et al (1998)] or transformed to determine dynamic storage and loss moduli [Mason & Weitz (1995)]. A prevalent hurdle arises when there is a non-diffusive experimental drift in the data. Commensurate with the magnitude of drift relative to diffusive mobility, quantified by a P\'eclet number, the MSD statistics are distorted, and thus the path data must be "corrected" for drift. The standard approach is to estimate and subtract the drift from particle paths, and then calculate MSD statistics. We present an alternative, parametric approach using maximum likelihood estimation that simultaneously fits drift and diffusive model parameters from the path data; the MSD statistics (and consequently the compliance and dynamic moduli) then follow directly from the best-fit model. We illustrate and compare both methods on simulated path data over a range of P\'eclet numbers, where exact answers are known. We choose fractional Brownian motion as the numerical model because it affords tunable, sub-diffusive MSD statistics consistent with typical 30 second long, experimental observations of microbeads in several biological fluids. Finally, we apply and compare both methods on data from human bronchial epithelial cell culture mucus.Comment: 29 pages, 12 figure

    Asteroid resource map for near-Earth space

    Get PDF
    Most future concepts for the exploration and exploitation of space require a large initial mass in low Earth orbit. Delivering this required mass from the Earth’s surface increases cost due to the large energy input necessary to move mass out of the Earth’s gravity well. An alternative is to search for resources in-situ among the near Earth asteroid population. The near Earth asteroid resources that could be transferred to a bound Earth orbit are determined by integrating the probability of finding asteroids inside the Keplerian orbital element space of the set of transfers with an specific energy smaller than a given threshold. Transfers are defined by a series of impulsive maneuvers and computed using the patched-conic approximation. The results show that even moderately low energy transfers enable access to a large mass of resources

    Fundamental Limits to Nonlinear Energy Harvesting

    Get PDF
    Linear and nonlinear vibration energy harvesting has been the focus of considerable research in recent years. However, fundamental limits on the harvestable energy of a harvester subjected to an arbitrary excitation force and different constraints is not yet fully understood. Understanding these limits is not only essential for an assessment of the technology potential, but it also provides a broader perspective on the current harvesting mechanisms and guidance in their improvement. Here, we derive the fundamental limits on the output power of an ideal energy harvester for arbitrary excitation waveforms and build on the current analysis framework for the simple computation of this limit for more sophisticated setups. We show that the optimal harvester maximizes the harvested energy through a mechanical analog of a buy-low-sell-high strategy. We also propose a nonresonant passive latch-assisted harvester to realize this strategy for an effective harvesting. It is shown that the proposed harvester harvests energy more effectively than its linear and bistable counterparts over a wider range of excitation frequencies and amplitudes. The buy-low-sell-high strategy also reveals why the conventional bistable harvester works well at low-frequency excitation

    Effective Doses of Recombinant Human Bone Morphogenetic Protein-2 in Experimental Spinal Fusion

    Get PDF
    Study Design Nineteen dogs underwent L4-L5 intertransverse process fusions with either 58 μg, 115 μg, 230 μg, 460 μg, or 920 μg of recombinant human bone morphogenetic protein-2 carried by a polylactic acid polymer. A previous study (12 dogs) compared 2300 μg of recombinant human bone morphogenetic protein-2, autogenous iliac bone, and carrier alone in this model. All fusions subsequently were compared. Objectives To characterize the dose-response relationship of recombinant human bone morphogenetic protein-2 in a spinal fusion model. Summary of Background Data Recombinant osteoinductive morphogens, such as recombinant human bone morphogenetic protein-2, are effective in vertebrate diaphyseal defect and spinal fusion models. It is hypothesized that the quality of spinal fusion produced with recombinant human bone morphogenetic protein-2, above a threshold dose, does not change with increasing amounts of inductive protein. Methods After decortication of the posterior elements, the designated implants were placed along the intertransverse process space bilaterally. The fusion sites were evaluated after 3 months by computed tomography imaging, high-resolution radiography, manual testing, mechanical testing, and histologic analysis. Results As in the study using 2300 μg of recombinant human bone morphogenetic protein-2, implantation of 58–920 μg of recombinant human bone morphogenetic protein-2 successfully resulted in intertransverse process fusion in the dog by 3 months. This had not occurred in animals containing autograft or carrier alone. The cross-sectional area of the fusion mass and mechanical stiffness of the L4-L5 intersegment were not dose-dependent. Histologic findings varied but were not related to rhBMP-2 dose. Inflammatory reaction to the composite implant was proportional inversely to the volume of the fusion mass. Conclusions No mechanical, radiographic, or histologic differences in the quality of intertransverse process fusion resulted from a 40-fold variation in dose of recombinant human bone morphogenetic protein-2

    The Temporal Expression of Adipokines During Spinal Fusion

    Get PDF
    Background Context Adipokines are secreted by white adipose tissue and have been associated with fracture healing. Our goal was to report the temporal expression of adipokines during spinal fusion in an established rabbit model. Purpose Our goal was to report the temporal expression of adipokines during spinal fusion in an established rabbit model. Study Design The study design included a laboratory animal model. Methods New Zealand white rabbits were assigned to either sham surgery (n=2), unilateral posterior spinal fusion (n=14), or bilateral posterior spinal fusion (n=14). Rabbits were euthanized 1–6 and 10 weeks out from surgery. Fusion was evaluated by radiographs, manual palpation, and histology. Reverse transcription-polymerase chain reaction on the bone fusion mass catalogued the gene expression of leptin, adiponectin, resistin, and vascular endothelial growth factor (VEGF) at each time point. Results were normalized to the internal control gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (2^ΔCt), and control bone sites (2^ΔΔCt). Quantitative data were analyzed by two-factor analysis of variance (p\u3c.05). Results Manual palpation scores, radiograph scores, and histologic findings showed progression of boney fusion over time (p Conclusions Leptin expression is likely associated with the maturation phase of bone fusion. Adiponectin and resistin may play a role early on during the fusion process. Our results suggest that leptin expression may be upstream of VEGF expression during spinal fusion, and both appear to play an important role in bone spinal fusion

    Wireless sensors and IoT platform for intelligent HVAC control

    Get PDF
    Energy consumption of buildings (residential and non-residential) represents approximately 40% of total world electricity consumption, with half of this energy consumed by HVAC systems. Model-Based Predictive Control (MBPC) is perhaps the technique most often proposed for HVAC control, since it offers an enormous potential for energy savings. Despite the large number of papers on this topic during the last few years, there are only a few reported applications of the use of MBPC for existing buildings, under normal occupancy conditions and, to the best of our knowledge, no commercial solution yet. A marketable solution has been recently presented by the authors, coined the IMBPC HVAC system. This paper describes the design, prototyping and validation of two components of this integrated system, the Self-Powered Wireless Sensors and the IOT platform developed. Results for the use of IMBPC in a real building under normal occupation demonstrate savings in the electricity bill while maintaining thermal comfort during the whole occupation schedule.QREN SIDT [38798]; Portuguese Foundation for Science & Technology, through IDMEC, under LAETA [ID/EMS/50022/2013

    Improved Resection and Outcome of Colon-Cancer Liver Metastasis with Fluorescence-Guided Surgery Using In Situ GFP Labeling with a Telomerase-Dependent Adenovirus in an Orthotopic Mouse Model.

    Get PDF
    Fluorescence-guided surgery (FGS) of cancer is an area of intense development. In the present report, we demonstrate that the telomerase-dependent green fluorescent protein (GFP)-containing adenovirus OBP-401 could label colon-cancer liver metastasis in situ in an orthotopic mouse model enabling successful FGS. OBP-401-GFP-labeled liver metastasis resulted in complete resection with FGS, in contrast, conventional bright-light surgery (BLS) did not result in complete resection of the metastasis. OBP-401-FGS reduced the recurrence rate and prolonged over-all survival compared with BLS. In conclusion, adenovirus OBP-401 is a powerful tool to label liver metastasis in situ with GFP which enables its complete resection, not possible with conventional BLS
    corecore