3,534 research outputs found

    Potential of using remote sensing techniques for global assessment of water footprint of crops

    Get PDF
    Remote sensing has long been a useful tool in global applications, since it provides physically-based, worldwide, and consistent spatial information. This paper discusses the potential of using these techniques in the research field of water management, particularly for ‘Water Footprint’ (WF) studies. The WF of a crop is defined as the volume of water consumed for its production, where green and blue WF stand for rain and irrigation water usage, respectively. In this paper evapotranspiration, precipitation, water storage, runoff and land use are identified as key variables to potentially be estimated by remote sensing and used for WF assessment. A mass water balance is proposed to calculate the volume of irrigation applied, and green and blue WF are obtained from the green and blue evapotranspiration components. The source of remote sensing data is described and a simplified example is included, which uses evapotranspiration estimates from the geostationary satellite Meteosat 9 and precipitation estimates obtained with the Climatic Prediction Center Morphing Technique (CMORPH). The combination of data in this approach brings several limitations with respect to discrepancies in spatial and temporal resolution and data availability, which are discussed in detail. This work provides new tools for global WF assessment and represents an innovative approach to global irrigation mapping, enabling the estimation of green and blue water use

    Soil moisture mapping from ASAR imagery for the Flumendosa and Meuse river basins

    Get PDF
    SP-461 (CD)Soil moisture monitoring and the characterization of the spatial and temporal variability of this hydrologic parameter at scales from small catchments to large river basins continues to receive much attention, reflecting its critical role in subsurface – land surface – atmosphere interactions and its importance to drought analysis, crop yield forecasting, irrigation planning, flood protection, and forest fire prevention. We will describe the objectives and methodologies of an Envisat project that will aim to produce maps of seasonal soil moisture patterns at the regional scale based on ASAR imagery. The work will be carried out for two river basins that have significantly different climatic, geologic, and land use characteristics: the Flumendosa basin in Sardinia (Italy) and the larger Meuse basin that drains a good part of Belgium and the Netherlands as well as portions of France, Germany, and Luxembourg. High resolution ASAR data will be acquired over selected catchment scale test sites within each of these study regions, whereas medium resolution images will be acquired over the entire river basin (or extended region in the case of the smaller basin). A statistical analysis of the information from the processed images at these two different scales will be used to develop an aggregation methodology to generate large scale soil moisture maps. Data assimilation techniques will also be developed for dynamically integrating the high resolution satellite data into catchment scale hydrological simulation models. The work being planned will be placed in the context of recent efforts at validating and applying SAR soil moisture data, which we will briefly review

    Environmental Controls of InSAR-Based Periglacial Ground Dynamics in a Sub-Arctic Landscape

    Get PDF
    Periglacial environments are characterized by highly dynamic landscapes. Freezing and thawing lead to ground movement, associated with cryoturbation and solifluction. These processes are sensitive to climate change and variably distributed depending on multiple environmental factors. In this study, we used multi-geometry Sentinel-1 Synthetic Aperture Radar Interferometry (InSAR) to investigate the spatial distribution of the mean annual ground velocity in a mountainous landscape in Northern Norway. Statistical modeling was employed to examine how periglacial ground velocity is related to environmental variables characterizing the diverse climatic, geomorphic, hydrological and biological conditions within a 148 km(2) study area. Two-dimensional (2D) InSAR results document mean annual ground velocity up to 15 mm/yr. Vertical and horizontal velocity components in the East-West plane show variable spatial distribution, which can be explained by the characteristics of cryoturbation and solifluction operating differently over flat and sloping terrain. Statistical modeling shows that slope angle and mean annual air temperature variables are the most important environmental factors explaining the distribution of the horizontal and vertical components, respectively. Vegetation and snow cover also have a local influence, interpreted as indicators of the ground material and moisture conditions. The results show contrasted model performance depending on the velocity component used as a response variable. In general, our study highlights the potential of integrating radar remote sensing and statistical modeling to investigate mountainous regions and better understand the relations between environmental factors, periglacial processes and ground dynamics.Peer reviewe

    Novel Satellite-Based Methodologies for Multi-Sensor and Multi-Scale Environmental Monitoring to Preserve Natural Capital

    Get PDF
    Global warming, as the biggest manifestation of climate change, has changed the distribution of water in the hydrological cycle by increasing the evapotranspiration rate resulting in anthropogenic and natural hazards adversely affecting modern and past human properties and heritage in different parts of the world. The comprehension of environmental issues is critical for ensuring our existence on Earth and environmental sustainability. Environmental modeling can be described as a simplified form of a real system that enhances our knowledge of how a system operates. Such models represent the functioning of various processes of the environment, such as processes related to the atmosphere, hydrology, land surface, and vegetation. The environmental models can be applied on a wide range of spatiotemporal scales (i.e. from local to global and from daily to decadal levels); and they can employ various types of models (e.g. process-driven, empirical or data-driven, deterministic, stochastic, etc.). Satellite remote sensing and Earth Observation techniques can be utilized as a powerful tool for flood mapping and monitoring. By increasing the number of satellites orbiting around the Earth, the spatial and temporal coverage of environmental phenomenon on the planet has in-creased. However, handling such a massive amount of data was a challenge for researchers in terms of data curation and pre-processing as well as required computational power. The advent of cloud computing platforms has eliminated such steps and created a great opportunity for rapid response to environmental crises. The purpose of this study was to gather state-of-the-art remote sensing and/or earth observation techniques and to further the knowledge concerned with any aspect of the use of remote sensing and/or big data in the field of geospatial analysis. In order to achieve the goals of this study, some of the water-related climate-change phenomena were studied via different mathematical, statistical, geomorphological and physical models using different satellite and in-situ data on different centralized and decentralized computational platforms. The structure of this study was divided into three chapters with their own materials, methodologies and results including: (1) flood monitoring; (2) soil water balance modeling; and (3) vegetation monitoring. The results of this part of the study can be summarize in: 1) presenting innovative procedures for fast and semi-automatic flood mapping and monitoring based on geomorphic methods, change detection techniques and remote sensing data; 2) modeling soil moisture and water balance components in the root zone layer using in-situ, drone and satellite data; incorporating downscaling techniques; 3) combining statistical methods with the remote sensing data for detecting inner anomalies in the vegetation covers such as pest emergence; 4) stablishing and disseminating the use of cloud computation platforms such as Google Earth Engine in order to eliminate the unnecessary steps for data curation and pre-processing as well as required computational power to handle the massive amount of RS data. As a conclusion, this study resulted in provision of useful information and methodologies for setting up strategies to mitigate damage and support the preservation of areas and landscape rich in cultural and natural heritage

    Integrating Vegetation Indices Models and Phenological Classification with Composite SAR and Optical Data for Cereal Yield Estimation in Finland (Part I)

    Get PDF
    Special Issue Microwave Remote Sensing.Abstract: During 1996–2006 the Ministry of Agriculture and Forestry in Finland, MTT Agrifood Research Finland and the Finnish Geodetic Institute carried out a joint remote sensing satellite research project. It evaluated the applicability of composite multispectral SAR and optical satellite data for cereal yield estimations in the annual crop inventory program. Three Vegetation Indices models (VGI, Infrared polynomial, NDVI and Composite multispetral SAR and NDVI) were validated to estimate cereal yield levels using solely optical and SAR satellite data (Composite Minimum Dataset). The average R2 for cereal yield (yb) was 0.627. The averaged composite SAR modeled grain yield level was 3,750 kg/ha (RMSE = 10.3%, 387 kg/ha) for high latitude spring cereals (4,018 kg/ha for spring wheat, 4,037 kg/ha for barley and 3,151 kg/ha for oats). Keywords: Composite multispectral modeling; SAR; classification; SatPhenClass algorithm; minimum dataset; cereal yield; phenology; LAI-bridge; CAP; IACS; FLPISPeer reviewe

    Potential of Spaceborne X & L-Band SAR-Data for Soil Moisture Mapping Using GIS and its Application to Hydrological Modelling: the Example of Gottleuba Catchment, Saxony / Germany

    Get PDF
    Hydrological modelling is a powerful tool for hydrologists and engineers involved in the planning and development of integrated approach for the management of water resources. With the recent advent of computational power and the growing availability of spatial data, RS and GIS technologies can augment to a great extent the conventional methods used in rainfall runoff studies; it is possible to accurately describe watershed characteristics in particularly when determining runoff response to rainfall input. The main objective of this study is to apply the potential of spaceborne SAR data for soil moisture retrieval in order to improve the spatial input parameters required for hydrological modelling. For the spatial database creation, high resolution 2 m aerial laser scanning Digital Terrain Model (DTM), soil map, and landuse map were used. Rainfall records were transformed into a runoff through hydrological parameterisation of the watershed and the river network using HEC-HMS software for rainfall runoff simulation. The Soil Conservation Services Curve Number (SCS-CN) and Soil Moisture Accounting (SMA) loss methods were selected to calculate the infiltration losses. In microwave remote sensing, the study of how the microwave interacts with the earth terrain has always been interesting in interpreting the satellite SAR images. In this research soil moisture was derived from two different types of Spaceborne SAR data; TerraSAR-X and ALOS PALSAR (L band). The developed integrated hydrological model was applied to the test site of the Gottleuba Catchment area which covers approximately 400 sqkm, located south of Pirna (Saxony, Germany). To validate the model historical precipitation data of the past ten years were performed. The validated model was further optimized using the extracted soil moisture from SAR data. The simulation results showed a reasonable match between the simulated and the observed hydrographs. Quantitatively the study concluded that based on SAR data, the model could be used as an expeditious tool of soil moisture mapping which required for hydrological modelling
    • …
    corecore