144,943 research outputs found

    Statistical Modeling of Optical Flow

    Full text link
    Optical flow estimation is one of the main subjects in computer vision. Many methods developed to compute the motion fields are built using standard heuristic formulation. In this paper, however, we learn a motion model. We de-velop a hybrid model by combining the learnt model with Markov Random Field (MRF). And then we introduce a method based on ”Radial Basis Function Neural Network” (RBF) to learn the model. When computing the displace-ment field, a Gaussian pyramidal down-sampling decom-position technique is employed. At each pyramidal level, we use bi-linear interpolation combined with an efficient warping technique to generate a residual image, which is then used at the finer level to compute the flow. To mini-mize the energy, we use two different discrete optimization methods: Graph-Cut algorithm, Tree-Reweighted Message Passing (TRW-S) algorithm. Results are demonstrated for our approach on synthetic images and fluid images from the real world. 1

    Deep Optical Flow Estimation Via Multi-Scale Correspondence Structure Learning

    Full text link
    As an important and challenging problem in computer vision, learning based optical flow estimation aims to discover the intrinsic correspondence structure between two adjacent video frames through statistical learning. Therefore, a key issue to solve in this area is how to effectively model the multi-scale correspondence structure properties in an adaptive end-to-end learning fashion. Motivated by this observation, we propose an end-to-end multi-scale correspondence structure learning (MSCSL) approach for optical flow estimation. In principle, the proposed MSCSL approach is capable of effectively capturing the multi-scale inter-image-correlation correspondence structures within a multi-level feature space from deep learning. Moreover, the proposed MSCSL approach builds a spatial Conv-GRU neural network model to adaptively model the intrinsic dependency relationships among these multi-scale correspondence structures. Finally, the above procedures for correspondence structure learning and multi-scale dependency modeling are implemented in a unified end-to-end deep learning framework. Experimental results on several benchmark datasets demonstrate the effectiveness of the proposed approach.Comment: 7 pages, 3 figures, 2 table

    A Deep-structured Conditional Random Field Model for Object Silhouette Tracking

    Full text link
    In this work, we introduce a deep-structured conditional random field (DS-CRF) model for the purpose of state-based object silhouette tracking. The proposed DS-CRF model consists of a series of state layers, where each state layer spatially characterizes the object silhouette at a particular point in time. The interactions between adjacent state layers are established by inter-layer connectivity dynamically determined based on inter-frame optical flow. By incorporate both spatial and temporal context in a dynamic fashion within such a deep-structured probabilistic graphical model, the proposed DS-CRF model allows us to develop a framework that can accurately and efficiently track object silhouettes that can change greatly over time, as well as under different situations such as occlusion and multiple targets within the scene. Experiment results using video surveillance datasets containing different scenarios such as occlusion and multiple targets showed that the proposed DS-CRF approach provides strong object silhouette tracking performance when compared to baseline methods such as mean-shift tracking, as well as state-of-the-art methods such as context tracking and boosted particle filtering.Comment: 17 page

    Modeling Quantum Optical Components, Pulses and Fiber Channels Using OMNeT++

    Full text link
    Quantum Key Distribution (QKD) is an innovative technology which exploits the laws of quantum mechanics to generate and distribute unconditionally secure cryptographic keys. While QKD offers the promise of unconditionally secure key distribution, real world systems are built from non-ideal components which necessitates the need to model and understand the impact these non-idealities have on system performance and security. OMNeT++ has been used as a basis to develop a simulation framework to support this endeavor. This framework, referred to as "qkdX" extends OMNeT++'s module and message abstractions to efficiently model optical components, optical pulses, operating protocols and processes. This paper presents the design of this framework including how OMNeT++'s abstractions have been utilized to model quantum optical components, optical pulses, fiber and free space channels. Furthermore, from our toolbox of created components, we present various notional and real QKD systems, which have been studied and analyzed.Comment: Published in: A. F\"orster, C. Minkenberg, G. R. Herrera, M. Kirsche (Eds.), Proc. of the 2nd OMNeT++ Community Summit, IBM Research - Zurich, Switzerland, September 3-4, 201

    Statistical Studies of Fading in Underwater Wireless Optical Channels in the Presence of Air Bubble, Temperature, and Salinity Random Variations (Long Version)

    Get PDF
    Optical signal propagation through underwater channels is affected by three main degrading phenomena, namely absorption, scattering, and fading. In this paper, we experimentally study the statistical distribution of intensity fluctuations in underwater wireless optical channels with random temperature and salinity variations as well as the presence of air bubbles. In particular, we define different scenarios to produce random fluctuations on the water refractive index across the propagation path, and then examine the accuracy of various statistical distributions in terms of their goodness of fit to the experimental data. We also obtain the channel coherence time to address the average period of fading temporal variations. The scenarios under consideration cover a wide range of scintillation index from weak to strong turbulence. Moreover, the effects of beam-collimator at the transmitter side and aperture averaging lens at the receiver side are experimentally investigated. We show that the use of a transmitter beam-collimator and/or a receiver aperture averaging lens suits single-lobe distributions such that the generalized Gamma and exponential Weibull distributions can excellently match the histograms of the acquired data. Our experimental results further reveal that the channel coherence time is on the order of 10310^{-3} seconds and larger which implies to the slow fading turbulent channels
    corecore