10,501 research outputs found

    Statistical Model Checking of Opportunistic Network Protocols

    Get PDF
    Statistical model checking is one of the powerful methods, used to analyze any large system. Test bed experiments are used for analysis of routing algorithms in computer network. For more deeper penetration, we use statistical model checking to analyze properties and performance of opportunistic networks. In order to do so, we link a statistical model checker to a discrete event simulator for opportunistic network. This linking allows statistical model checking of several opportunistic network properties and protocols

    Hybrid performance modelling of opportunistic networks

    Get PDF
    We demonstrate the modelling of opportunistic networks using the process algebra stochastic HYPE. Network traffic is modelled as continuous flows, contact between nodes in the network is modelled stochastically, and instantaneous decisions are modelled as discrete events. Our model describes a network of stationary video sensors with a mobile ferry which collects data from the sensors and delivers it to the base station. We consider different mobility models and different buffer sizes for the ferries. This case study illustrates the flexibility and expressive power of stochastic HYPE. We also discuss the software that enables us to describe stochastic HYPE models and simulate them.Comment: In Proceedings QAPL 2012, arXiv:1207.055

    Time-Varying Graphs and Dynamic Networks

    Full text link
    The past few years have seen intensive research efforts carried out in some apparently unrelated areas of dynamic systems -- delay-tolerant networks, opportunistic-mobility networks, social networks -- obtaining closely related insights. Indeed, the concepts discovered in these investigations can be viewed as parts of the same conceptual universe; and the formal models proposed so far to express some specific concepts are components of a larger formal description of this universe. The main contribution of this paper is to integrate the vast collection of concepts, formalisms, and results found in the literature into a unified framework, which we call TVG (for time-varying graphs). Using this framework, it is possible to express directly in the same formalism not only the concepts common to all those different areas, but also those specific to each. Based on this definitional work, employing both existing results and original observations, we present a hierarchical classification of TVGs; each class corresponds to a significant property examined in the distributed computing literature. We then examine how TVGs can be used to study the evolution of network properties, and propose different techniques, depending on whether the indicators for these properties are a-temporal (as in the majority of existing studies) or temporal. Finally, we briefly discuss the introduction of randomness in TVGs.Comment: A short version appeared in ADHOC-NOW'11. This version is to be published in Internation Journal of Parallel, Emergent and Distributed System

    Securing Real-Time Internet-of-Things

    Full text link
    Modern embedded and cyber-physical systems are ubiquitous. A large number of critical cyber-physical systems have real-time requirements (e.g., avionics, automobiles, power grids, manufacturing systems, industrial control systems, etc.). Recent developments and new functionality requires real-time embedded devices to be connected to the Internet. This gives rise to the real-time Internet-of-things (RT-IoT) that promises a better user experience through stronger connectivity and efficient use of next-generation embedded devices. However RT- IoT are also increasingly becoming targets for cyber-attacks which is exacerbated by this increased connectivity. This paper gives an introduction to RT-IoT systems, an outlook of current approaches and possible research challenges towards secure RT- IoT frameworks

    Opportunistic Sensing: Security Challenges for the New Paradigm

    Get PDF
    We study the security challenges that arise in Opportunistic people-centric sensing, a new sensing paradigm leveraging humans as part of the sensing infrastructure. Most prior sensor-network research has focused on collecting and processing environmental data using a static topology and an application-aware infrastructure, whereas opportunistic sensing involves collecting, storing, processing and fusing large volumes of data related to everyday human activities. This highly dynamic and mobile setting, where humans are the central focus, presents new challenges for information security, because data originates from sensors carried by people— not tiny sensors thrown in the forest or attached to animals. In this paper we aim to instigate discussion of this critical issue, because opportunistic people-centric sensing will never succeed without adequate provisions for security and privacy. To that end, we outline several important challenges and suggest general solutions that hold promise in this new sensing paradigm
    corecore