108,643 research outputs found

    Efficacy of MRI data harmonization in the age of machine learning. A multicenter study across 36 datasets

    Full text link
    Pooling publicly-available MRI data from multiple sites allows to assemble extensive groups of subjects, increase statistical power, and promote data reuse with machine learning techniques. The harmonization of multicenter data is necessary to reduce the confounding effect associated with non-biological sources of variability in the data. However, when applied to the entire dataset before machine learning, the harmonization leads to data leakage, because information outside the training set may affect model building, and potentially falsely overestimate performance. We propose a 1) measurement of the efficacy of data harmonization; 2) harmonizer transformer, i.e., an implementation of the ComBat harmonization allowing its encapsulation among the preprocessing steps of a machine learning pipeline, avoiding data leakage. We tested these tools using brain T1-weighted MRI data from 1740 healthy subjects acquired at 36 sites. After harmonization, the site effect was removed or reduced, and we measured the data leakage effect in predicting individual age from MRI data, highlighting that introducing the harmonizer transformer into a machine learning pipeline allows for avoiding data leakage

    Simulation of Water Distribution Systems

    Get PDF
    In this paper a software package offering a means of simulating complex water distribution systems is described. It has been developed in the course of our investigations into the applicability of neural networks and fuzzy systems for the implementation of decision support systems in operational control of industrial processes with case-studies taken from the water industry. Examples of how the simulation package have been used in a design and testing of the algorithms for state estimation, confidence limit analysis and fault detection are presented. Arguments for using a suitable graphical visualization techniques in solving problems like meter placement or leakage diagnosis are also given and supported by a set of examples

    Quantum leakage detection using a model-independent dimension witness

    Full text link
    Users of quantum computers must be able to confirm they are indeed functioning as intended, even when the devices are remotely accessed. In particular, if the Hilbert space dimension of the components are not as advertised -- for instance if the qubits suffer leakage -- errors can ensue and protocols may be rendered insecure. We refine the method of delayed vectors, adapted from classical chaos theory to quantum systems, and apply it remotely on the IBMQ platform -- a quantum computer composed of transmon qubits. The method witnesses, in a model-independent fashion, dynamical signatures of higher-dimensional processes. We present evidence, under mild assumptions, that the IBMQ transmons suffer state leakage, with a pp value no larger than 5×10−45{\times}10^{-4} under a single qubit operation. We also estimate the number of shots necessary for revealing leakage in a two-qubit system.Comment: 11 pages, 5 figure

    Measurements of Sub-degree B-mode Polarization in the Cosmic Microwave Background from 100 Square Degrees of SPTpol Data

    Get PDF
    We present a measurement of the BB-mode polarization power spectrum (the BBBB spectrum) from 100 deg2\mathrm{deg}^2 of sky observed with SPTpol, a polarization-sensitive receiver currently installed on the South Pole Telescope. The observations used in this work were taken during 2012 and early 2013 and include data in spectral bands centered at 95 and 150 GHz. We report the BBBB spectrum in five bins in multipole space, spanning the range 300≤ℓ≤2300300 \le \ell \le 2300, and for three spectral combinations: 95 GHz ×\times 95 GHz, 95 GHz ×\times 150 GHz, and 150 GHz ×\times 150 GHz. We subtract small (<0.5σ< 0.5 \sigma in units of statistical uncertainty) biases from these spectra and account for the uncertainty in those biases. The resulting power spectra are inconsistent with zero power but consistent with predictions for the BBBB spectrum arising from the gravitational lensing of EE-mode polarization. If we assume no other source of BBBB power besides lensed BB modes, we determine a preference for lensed BB modes of 4.9σ4.9 \sigma. After marginalizing over tensor power and foregrounds, namely polarized emission from galactic dust and extragalactic sources, this significance is 4.3σ4.3 \sigma. Fitting for a single parameter, AlensA_\mathrm{lens}, that multiplies the predicted lensed BB-mode spectrum, and marginalizing over tensor power and foregrounds, we find Alens=1.08±0.26A_\mathrm{lens} = 1.08 \pm 0.26, indicating that our measured spectra are consistent with the signal expected from gravitational lensing. The data presented here provide the best measurement to date of the BB-mode power spectrum on these angular scales.Comment: 21 pages, 4 figure

    Measuring Information Leakage in Website Fingerprinting Attacks and Defenses

    Full text link
    Tor provides low-latency anonymous and uncensored network access against a local or network adversary. Due to the design choice to minimize traffic overhead (and increase the pool of potential users) Tor allows some information about the client's connections to leak. Attacks using (features extracted from) this information to infer the website a user visits are called Website Fingerprinting (WF) attacks. We develop a methodology and tools to measure the amount of leaked information about a website. We apply this tool to a comprehensive set of features extracted from a large set of websites and WF defense mechanisms, allowing us to make more fine-grained observations about WF attacks and defenses.Comment: In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS '18

    Dealing with missing data: An inpainting application to the MICROSCOPE space mission

    Full text link
    Missing data are a common problem in experimental and observational physics. They can be caused by various sources, either an instrument's saturation, or a contamination from an external event, or a data loss. In particular, they can have a disastrous effect when one is seeking to characterize a colored-noise-dominated signal in Fourier space, since they create a spectral leakage that can artificially increase the noise. It is therefore important to either take them into account or to correct for them prior to e.g. a Least-Square fit of the signal to be characterized. In this paper, we present an application of the {\it inpainting} algorithm to mock MICROSCOPE data; {\it inpainting} is based on a sparsity assumption, and has already been used in various astrophysical contexts; MICROSCOPE is a French Space Agency mission, whose launch is expected in 2016, that aims to test the Weak Equivalence Principle down to the 10−1510^{-15} level. We then explore the {\it inpainting} dependence on the number of gaps and the total fraction of missing values. We show that, in a worst-case scenario, after reconstructing missing values with {\it inpainting}, a Least-Square fit may allow us to significantly measure a 1.1×10−151.1\times10^{-15} Equivalence Principle violation signal, which is sufficiently close to the MICROSCOPE requirements to implement {\it inpainting} in the official MICROSCOPE data processing and analysis pipeline. Together with the previously published KARMA method, {\it inpainting} will then allow us to independently characterize and cross-check an Equivalence Principle violation signal detection down to the 10−1510^{-15} level.Comment: Accepted for publication in Physical Review D. 12 pages, 6 figure

    CSI Neural Network: Using Side-channels to Recover Your Artificial Neural Network Information

    Get PDF
    Machine learning has become mainstream across industries. Numerous examples proved the validity of it for security applications. In this work, we investigate how to reverse engineer a neural network by using only power side-channel information. To this end, we consider a multilayer perceptron as the machine learning architecture of choice and assume a non-invasive and eavesdropping attacker capable of measuring only passive side-channel leakages like power consumption, electromagnetic radiation, and reaction time. We conduct all experiments on real data and common neural net architectures in order to properly assess the applicability and extendability of those attacks. Practical results are shown on an ARM CORTEX-M3 microcontroller. Our experiments show that the side-channel attacker is capable of obtaining the following information: the activation functions used in the architecture, the number of layers and neurons in the layers, the number of output classes, and weights in the neural network. Thus, the attacker can effectively reverse engineer the network using side-channel information. Next, we show that once the attacker has the knowledge about the neural network architecture, he/she could also recover the inputs to the network with only a single-shot measurement. Finally, we discuss several mitigations one could use to thwart such attacks.Comment: 15 pages, 16 figure
    • …
    corecore