166,571 research outputs found

    Statistical Machine Learning for Human Behaviour Analysis

    Get PDF
    Human behaviour analysis has introduced several challenges in various fields, such as applied information theory, affective computing, robotics, biometrics and pattern recognition. This Special Issue focused on novel vision-based approaches, mainly related to computer vision and machine learning, for the automatic analysis of human behaviour. We solicited submissions on the following topics: information theory-based pattern classification, biometric recognition, multimodal human analysis, low resolution human activity analysis, face analysis, abnormal behaviour analysis, unsupervised human analysis scenarios, 3D/4D human pose and shape estimation, human analysis in virtual/augmented reality, affective computing, social signal processing, personality computing, activity recognition, human tracking in the wild, and application of information-theoretic concepts for human behaviour analysis. In the end, 15 papers were accepted for this special issue [1-15]. These papers, that are reviewed in this editorial, analyse human behaviour from the aforementioned perspectives, defining in most of the cases the state of the art in their corresponding field. Most of the included papers are application-based systems, while [15] focuses on the understanding and interpretation of a classification model, which is an important factor for the classifier's credibility. Given a set of categorical data, [15] utilizes multi-objective optimization algorithms, like ENORA and NSGA-II, to produce rule-based classification models that are easy to interpret. Performance of the classifier and its number of rules are optimized during the learning, where the first one is obviously expected to bemaximizedwhile the second one is expected to beminimized. Testing on public databases, using 10-fold cross-validation, shows the superiority of the proposed method against classifiers that are generated using other previously published methods like PART, JRip, OneR and ZeroR. Two published papers ([1,9]) have privacy as their main concern, while they develop their respective systems for biometrics recognition and action recognition. Reference [1] has considered a privacy-aware biometrics system. The idea is that the identity of the users should not be readily revealed from their biometrics, like facial images. Therefore, they have collected a database of foot and hand traits of users while opening a door to grant or deny access, while [9] develops a privacy-aware method for action recognition using recurrent neural networks. The system accumulates reflections of light pulses omitted by a laser, using a single-pixel hybrid photodetector. This includes information about the distance of the objects to the capturing device and their shapes

    Machine learning-based human observer analysis of video sequences

    Get PDF
    The research contributes to the field of video analysis by proposing novel approaches to automatically generating human observer performance patterns that can be effectively used in advancing the modern video analytic and forensic algorithms. Eye tracker and eye movement analysis technology are employed in medical research, psychology, cognitive science and advertising. The data collected on human eye movement from the eye tracker can be analyzed using the machine and statistical learning approaches. Therefore, the study attempts to understand the visual attention pattern of people when observing a captured CCTV footage. It intends to prove whether the eye gaze of the observer which determines their behaviour is dependent on the given instructions or the knowledge they learn from the surveillance task. The research attempts to understand whether the attention of the observer on human objects is differently identified and tracked considering the different areas of the body of the tracked object. It attempts to know whether pattern analysis and machine learning can effectively replace the current conceptual and statistical approaches to the analysis of eye-tracking data captured within a CCTV surveillance task. A pilot study was employed that took around 30 minutes for each participant. It involved observing 13 different pre-recorded CCTV clips of public space. The participants are provided with a clear written description of the targets they should find in each video. The study included a total of 24 participants with varying levels of experience in analyzing CCTV video. A Tobii eye tracking system was employed to record the eye movements of the participants. The data captured by the eye tracking sensor is analyzed using statistical data analysis approaches like SPSS and machine learning algorithms using WEKA. The research concluded the existence of differences in behavioural patterns which could be used to classify participants of study is appropriate machine learning algorithms are employed. The research conducted on video analytics was perceived to be limited to few iii projects where the human object being observed was viewed as one object, and hence the detailed analysis of human observer attention pattern based on human body part articulation has not been investigated. All previous attempts in human observer visual attention pattern analysis on CCTV video analytics and forensics either used conceptual or statistical approaches. These methods were limited with regards to making predictions and the detection of hidden patterns. A novel approach to articulating human objects to be identified and tracked in a visual surveillance task led to constrained results, which demanded the use of advanced machine learning algorithms for classification of participants The research conducted within the context of this thesis resulted in several practical data collection and analysis challenges during formal CCTV operator based surveillance tasks. These made it difficult to obtain the appropriate cooperation from the expert operators of CCTV for data collection. Therefore, if expert operators were employed in the study rather than novice operator, a more discriminative and accurate classification would have been achieved. Machine learning approaches like ensemble learning and tree based algorithms can be applied in cases where a more detailed analysis of the human behaviour is needed. Traditional machine learning approaches are challenged by recent advances in the field of convolutional neural networks and deep learning. Therefore, future research can replace the traditional machine learning approaches employed in this study, with convolutional neural networks. The current research was limited to 13 different videos with different descriptions given to the participants for identifying and tracking different individuals. The research can be expanded to include any complicated demands with regards to changes in the analysis process

    Artificial Intelligence and Behavioral Science Through the Looking Glass: Challenges for Real-World Application

    Get PDF
    Background: Artificial Intelligence (AI) is transforming the process of scientific research. AI, coupled with availability of large datasets and increasing computational power, is accelerating progress in areas such as genetics, climate change and astronomy [NeurIPS 2019 Workshop Tackling Climate Change with Machine Learning, Vancouver, Canada; Hausen R, Robertson BE. Morpheus: A deep learning framework for the pixel-level analysis of astronomical image data. Astrophys J Suppl Ser. 2020;248:20; Dias R, Torkamani A. AI in clinical and genomic diagnostics. Genome Med. 2019;11:70.]. The application of AI in behavioral science is still in its infancy and realizing the promise of AI requires adapting current practices. Purposes: By using AI to synthesize and interpret behavior change intervention evaluation report findings at a scale beyond human capability, the HBCP seeks to improve the efficiency and effectiveness of research activities. We explore challenges facing AI adoption in behavioral science through the lens of lessons learned during the Human Behaviour-Change Project (HBCP). Methods: The project used an iterative cycle of development and testing of AI algorithms. Using a corpus of published research reports of randomized controlled trials of behavioral interventions, behavioral science experts annotated occurrences of interventions and outcomes. AI algorithms were trained to recognize natural language patterns associated with interventions and outcomes from the expert human annotations. Once trained, the AI algorithms were used to predict outcomes for interventions that were checked by behavioral scientists. Results: Intervention reports contain many items of information needing to be extracted and these are expressed in hugely variable and idiosyncratic language used in research reports to convey information makes developing algorithms to extract all the information with near perfect accuracy impractical. However, statistical matching algorithms combined with advanced machine learning approaches created reasonably accurate outcome predictions from incomplete data. Conclusions: AI holds promise for achieving the goal of predicting outcomes of behavior change interventions, based on information that is automatically extracted from intervention evaluation reports. This information can be used to train knowledge systems using machine learning and reasoning algorithms

    Discriminative conditional restricted Boltzmann machine for discrete choice and latent variable modelling

    Full text link
    Conventional methods of estimating latent behaviour generally use attitudinal questions which are subjective and these survey questions may not always be available. We hypothesize that an alternative approach can be used for latent variable estimation through an undirected graphical models. For instance, non-parametric artificial neural networks. In this study, we explore the use of generative non-parametric modelling methods to estimate latent variables from prior choice distribution without the conventional use of measurement indicators. A restricted Boltzmann machine is used to represent latent behaviour factors by analyzing the relationship information between the observed choices and explanatory variables. The algorithm is adapted for latent behaviour analysis in discrete choice scenario and we use a graphical approach to evaluate and understand the semantic meaning from estimated parameter vector values. We illustrate our methodology on a financial instrument choice dataset and perform statistical analysis on parameter sensitivity and stability. Our findings show that through non-parametric statistical tests, we can extract useful latent information on the behaviour of latent constructs through machine learning methods and present strong and significant influence on the choice process. Furthermore, our modelling framework shows robustness in input variability through sampling and validation

    The Profiling Potential of Computer Vision and the Challenge of Computational Empiricism

    Full text link
    Computer vision and other biometrics data science applications have commenced a new project of profiling people. Rather than using 'transaction generated information', these systems measure the 'real world' and produce an assessment of the 'world state' - in this case an assessment of some individual trait. Instead of using proxies or scores to evaluate people, they increasingly deploy a logic of revealing the truth about reality and the people within it. While these profiling knowledge claims are sometimes tentative, they increasingly suggest that only through computation can these excesses of reality be captured and understood. This article explores the bases of those claims in the systems of measurement, representation, and classification deployed in computer vision. It asks if there is something new in this type of knowledge claim, sketches an account of a new form of computational empiricism being operationalised, and questions what kind of human subject is being constructed by these technological systems and practices. Finally, the article explores legal mechanisms for contesting the emergence of computational empiricism as the dominant knowledge platform for understanding the world and the people within it

    Identifying Rare and Subtle Behaviors: A Weakly Supervised Joint Topic Model

    Get PDF
    • …
    corecore