207,900 research outputs found

    Knowledge Discovery from Vibration Measurements

    Get PDF
    The framework as well as the particular algorithms of pattern recognition process is widely adopted in structural health monitoring (SHM). However, as a part of the overall process of knowledge discovery from data bases (KDD), the results of pattern recognition are only changes and patterns of changes of data features. In this paper, based on the similarity between KDD and SHM and considering the particularity of SHM problems, a four-step framework of SHM is proposed which extends the final goal of SHM from detecting damages to extracting knowledge to facilitate decision making. The purposes and proper methods of each step of this framework are discussed. To demonstrate the proposed SHM framework, a specific SHM method which is composed by the second order structural parameter identification, statistical control chart analysis, and system reliability analysis is then presented. To examine the performance of this SHM method, real sensor data measured from a lab size steel bridge model structure are used. The developed four-step framework of SHM has the potential to clarify the process of SHM to facilitate the further development of SHM techniques

    Modeling Human Understanding of Complex Intentional Action with a Bayesian Nonparametric Subgoal Model

    Full text link
    Most human behaviors consist of multiple parts, steps, or subtasks. These structures guide our action planning and execution, but when we observe others, the latent structure of their actions is typically unobservable, and must be inferred in order to learn new skills by demonstration, or to assist others in completing their tasks. For example, an assistant who has learned the subgoal structure of a colleague's task can more rapidly recognize and support their actions as they unfold. Here we model how humans infer subgoals from observations of complex action sequences using a nonparametric Bayesian model, which assumes that observed actions are generated by approximately rational planning over unknown subgoal sequences. We test this model with a behavioral experiment in which humans observed different series of goal-directed actions, and inferred both the number and composition of the subgoal sequences associated with each goal. The Bayesian model predicts human subgoal inferences with high accuracy, and significantly better than several alternative models and straightforward heuristics. Motivated by this result, we simulate how learning and inference of subgoals can improve performance in an artificial user assistance task. The Bayesian model learns the correct subgoals from fewer observations, and better assists users by more rapidly and accurately inferring the goal of their actions than alternative approaches.Comment: Accepted at AAAI 1

    Global Thresholding and Multiple Pass Parsing

    Full text link
    We present a variation on classic beam thresholding techniques that is up to an order of magnitude faster than the traditional method, at the same performance level. We also present a new thresholding technique, global thresholding, which, combined with the new beam thresholding, gives an additional factor of two improvement, and a novel technique, multiple pass parsing, that can be combined with the others to yield yet another 50% improvement. We use a new search algorithm to simultaneously optimize the thresholding parameters of the various algorithms.Comment: Fixed latex errors; fixed minor errors in published versio

    Graphic Symbol Recognition using Graph Based Signature and Bayesian Network Classifier

    Full text link
    We present a new approach for recognition of complex graphic symbols in technical documents. Graphic symbol recognition is a well known challenge in the field of document image analysis and is at heart of most graphic recognition systems. Our method uses structural approach for symbol representation and statistical classifier for symbol recognition. In our system we represent symbols by their graph based signatures: a graphic symbol is vectorized and is converted to an attributed relational graph, which is used for computing a feature vector for the symbol. This signature corresponds to geometry and topology of the symbol. We learn a Bayesian network to encode joint probability distribution of symbol signatures and use it in a supervised learning scenario for graphic symbol recognition. We have evaluated our method on synthetically deformed and degraded images of pre-segmented 2D architectural and electronic symbols from GREC databases and have obtained encouraging recognition rates.Comment: 5 pages, 8 figures, Tenth International Conference on Document Analysis and Recognition (ICDAR), IEEE Computer Society, 2009, volume 10, 1325-132

    An audio-based sports video segmentation and event detection algorithm

    Get PDF
    In this paper, we present an audio-based event detection algorithm shown to be effective when applied to Soccer video. The main benefit of this approach is the ability to recognise patterns that display high levels of crowd response correlated to key events. The soundtrack from a Soccer sequence is first parameterised using Mel-frequency Cepstral coefficients. It is then segmented into homogenous components using a windowing algorithm with a decision process based on Bayesian model selection. This decision process eliminated the need for defining a heuristic set of rules for segmentation. Each audio segment is then labelled using a series of Hidden Markov model (HMM) classifiers, each a representation of one of 6 predefined semantic content classes found in Soccer video. Exciting events are identified as those segments belonging to a crowd cheering class. Experimentation indicated that the algorithm was more effective for classifying crowd response when compared to traditional model-based segmentation and classification techniques

    Probabilistic Constraint Logic Programming

    Full text link
    This paper addresses two central problems for probabilistic processing models: parameter estimation from incomplete data and efficient retrieval of most probable analyses. These questions have been answered satisfactorily only for probabilistic regular and context-free models. We address these problems for a more expressive probabilistic constraint logic programming model. We present a log-linear probability model for probabilistic constraint logic programming. On top of this model we define an algorithm to estimate the parameters and to select the properties of log-linear models from incomplete data. This algorithm is an extension of the improved iterative scaling algorithm of Della-Pietra, Della-Pietra, and Lafferty (1995). Our algorithm applies to log-linear models in general and is accompanied with suitable approximation methods when applied to large data spaces. Furthermore, we present an approach for searching for most probable analyses of the probabilistic constraint logic programming model. This method can be applied to the ambiguity resolution problem in natural language processing applications.Comment: 35 pages, uses sfbart.cl
    • 

    corecore