8,370 research outputs found

    Gait recognition under carrying condition : a static dynamic fusion method

    Get PDF
    When an individual carries an object, such as a briefcase, conventional gait recognition algorithms based on average silhouette/Gait Energy Image (GEI) do not always perform well as the object carried may have the potential of being mistakenly regarded as a part of the human body. To solve such a problem, in this paper, instead of directly applying GEI to represent the gait information, we propose a novel dynamic feature template for classification. Based on this extracted dynamic information and some static feature templates (i.e., head part and trunk part), we cast gait recognition on the large USF (University of South Florida) database by adopting a static/dynamic fusion strategy. For the experiments involving carrying condition covariate, significant improvements are achieved when compared with other classic algorithms

    A data augmentation methodology for training machine/deep learning gait recognition algorithms

    Get PDF
    There are several confounding factors that can reduce the accuracy of gait recognition systems. These factors can reduce the distinctiveness, or alter the features used to characterise gait; they include variations in clothing, lighting, pose and environment, such as the walking surface. Full invariance to all confounding factors is challenging in the absence of high-quality labelled training data. We introduce a simulation-based methodology and a subject-specific dataset which can be used for generating synthetic video frames and sequences for data augmentation. With this methodology, we generated a multi-modal dataset. In addition, we supply simulation files that provide the ability to simultaneously sample from several confounding variables. The basis of the data is real motion capture data of subjects walking and running on a treadmill at different speeds. Results from gait recognition experiments suggest that information about the identity of subjects is retained within synthetically generated examples. The dataset and methodology allow studies into fully-invariant identity recognition spanning a far greater number of observation conditions than would otherwise be possible

    Multi-set canonical correlation analysis for 3D abnormal gait behaviour recognition based on virtual sample generation

    Get PDF
    Small sample dataset and two-dimensional (2D) approach are challenges to vision-based abnormal gait behaviour recognition (AGBR). The lack of three-dimensional (3D) structure of the human body causes 2D based methods to be limited in abnormal gait virtual sample generation (VSG). In this paper, 3D AGBR based on VSG and multi-set canonical correlation analysis (3D-AGRBMCCA) is proposed. First, the unstructured point cloud data of gait are obtained by using a structured light sensor. A 3D parametric body model is then deformed to fit the point cloud data, both in shape and posture. The features of point cloud data are then converted to a high-level structured representation of the body. The parametric body model is used for VSG based on the estimated body pose and shape data. Symmetry virtual samples, pose-perturbation virtual samples and various body-shape virtual samples with multi-views are generated to extend the training samples. The spatial-temporal features of the abnormal gait behaviour from different views, body pose and shape parameters are then extracted by convolutional neural network based Long Short-Term Memory model network. These are projected onto a uniform pattern space using deep learning based multi-set canonical correlation analysis. Experiments on four publicly available datasets show the proposed system performs well under various conditions

    Gait recognition based on shape and motion analysis of silhouette contours

    Get PDF
    This paper presents a three-phase gait recognition method that analyses the spatio-temporal shape and dynamic motion (STS-DM) characteristics of a human subjectā€™s silhouettes to identify the subject in the presence of most of the challenging factors that affect existing gait recognition systems. In phase 1, phase-weighted magnitude spectra of the Fourier descriptor of the silhouette contours at ten phases of a gait period are used to analyse the spatio-temporal changes of the subjectā€™s shape. A component-based Fourier descriptor based on anatomical studies of human body is used to achieve robustness against shape variations caused by all common types of small carrying conditions with folded hands, at the subjectā€™s back and in upright position. In phase 2, a full-body shape and motion analysis is performed by fitting ellipses to contour segments of ten phases of a gait period and using a histogram matching with Bhattacharyya distance of parameters of the ellipses as dissimilarity scores. In phase 3, dynamic time warping is used to analyse the angular rotation pattern of the subjectā€™s leading knee with a consideration of arm-swing over a gait period to achieve identification that is invariant to walking speed, limited clothing variations, hair style changes and shadows under feet. The match scores generated in the three phases are fused using weight-based score-level fusion for robust identification in the presence of missing and distorted frames, and occlusion in the scene. Experimental analyses on various publicly available data sets show that STS-DM outperforms several state-of-the-art gait recognition methods

    Personnel recognition and gait classification based on multistatic micro-doppler signatures using deep convolutional neural networks

    Get PDF
    In this letter, we propose two methods for personnel recognition and gait classification using deep convolutional neural networks (DCNNs) based on multistatic radar micro-Doppler signatures. Previous DCNN-based schemes have mainly focused on monostatic scenarios, whereas directional diversity offered by multistatic radar is exploited in this letter to improve classification accuracy. We first propose the voted monostatic DCNN (VMo-DCNN) method, which trains DCNNs on each receiver node separately and fuses the results by binary voting. By merging the fusion step into the network architecture, we further propose the multistatic DCNN (Mul-DCNN) method, which performs slightly better than VMo-DCNN. These methods are validated on real data measured with a 2.4-GHz multistatic radar system. Experimental results show that the Mul-DCNN achieves over 99% accuracy in armed/unarmed gait classification using only 20% training data and similar performance in two-class personnel recognition using 50% training data, which are higher than the accuracy obtained by performing DCNN on a single radar node

    Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors

    Get PDF
    This paper presents a gait recognition method which combines spatio-temporal motion characteristics, statistical and physical parameters (referred to as STM-SPP) of a human subject for its classification by analysing shape of the subject's silhouette contours using Procrustes shape analysis (PSA) and elliptic Fourier descriptors (EFDs). STM-SPP uses spatio-temporal gait characteristics and physical parameters of human body to resolve similar dissimilarity scores between probe and gallery sequences obtained by PSA. A part-based shape analysis using EFDs is also introduced to achieve robustness against carrying conditions. The classification results by PSA and EFDs are combined, resolving tie in ranking using contour matching based on Hu moments. Experimental results show STM-SPP outperforms several silhouette-based gait recognition methods
    • ā€¦
    corecore