23,205 research outputs found

    miR-9 Acts as an OncomiR in Prostate Cancer through Multiple Pathways That Drive Tumour Progression and Metastasis

    Get PDF
    Identification of dysregulated microRNAs (miRNAs) in prostate cancer is critical not only for diagnosis, but also differentiation between the aggressive and indolent forms of the disease. miR-9 was identified as an oncomiR through both miRNA panel RT-qPCR as well as high-throughput sequencing analysis of the human P69 prostate cell line as compared to its highly tumorigenic and metastatic subline M12, and found to be consistently upregulated in other prostate cell lines including DU-145 and PC3. While miR-9 has been characterized as dysregulated either as an oncomiR or tumour suppressor in a variety of other cancers including breast, ovarian, and nasopharyngeal carcinomas, it has not been previously evaluated and proven as an oncomiR in prostate cancer. miR-9 was confirmed an oncomiR when found to be overexpressed in tumour tissue as compared to adjacent benign glandular epithelium through laser-capture microdissection of radical prostatectomy biopsies. Inhibition of miR-9 resulted in reduced migratory and invasive potential of the M12 cell line, and reduced tumour growth and metastases in male athymic nude mice. Analysis showed that miR-9 targets e-cadherin and suppressor of cytokine signalling 5 (SOCS5), but not NF-ĸB mRNA. Expression of these proteins was shown to be affected by modulation in expression of miR-9

    Novel tumor suppressor microRNA at frequently deleted chromosomal region 8p21 regulates epidermal growth factor receptor in prostate cancer.

    Get PDF
    Genomic loss of chromosome (chr) 8p21 region, containing prostate-specific NKX3.1 gene, is a frequent alteration of the prostate cancer (PCa) oncogenome. We propose a novel, paradigm shifting hypothesis that this frequently deleted locus is also associated with a cluster of microRNA genes- miR-3622a/b- that are lost in PCa and play an important mechanistic role in progression and metastasis. In this study, we demonstrate the role of miR-3622b in prostate cancer. Expression analyses in a cohort of PCa clinical specimens and cell lines show that miR-3622b expression is frequently lost in prostate cancer. Low miR-3622b expression was found to be associated with tumor progression and poor biochemical recurrence-free survival. Further, our analyses suggest that miR-3622b expression is a promising prostate cancer diagnostic biomarker that exhibits 100% specificity and 66% sensitivity. Restoration of miR-3622b expression in PCa cell lines led to reduced cellular viability, proliferation, invasiveness, migration and increased apoptosis. miR-3622b overexpression in vivo induced regression of established prostate tumor xenografts pointing to its therapeutic potential. Further, we found that miR-3622b directly represses Epidermal Growth Factor Receptor (EGFR). In conclusion, our study suggests that miR-3622b plays a tumor suppressive role and is frequently downregulated in prostate cancer, leading to EGFR upregulation. Importantly, miR-3622b has associated diagnostic, prognostic and therapeutic potential. Considering the association of chr8p21 loss with poor prognosis, our findings are highly significant and support a novel concept that associates a long standing observation of frequent loss of a chromosomal region with a novel miRNA in prostate cancer

    An empirical investigation of Network-Oriented Behaviors in Business-to-Business Markets

    Get PDF
    This study is concerned with the extent to which network-oriented behaviors directly and/or indirectly affect firm performance. It argues that a firm's interaction behaviors in relation to an embedded network structure are key mechanisms that facilitate the development of important organizational capabilities in dealing with business partners. Such network-oriented behaviors, which are aimed at affecting the position of a company in the network, are consequently important drivers of firm performance, rather than the network structure alone. We develop a conceptual model that captures network-oriented behaviors as a driving force of firm performance in relation to three other key organizational behaviors, i.e., customer-oriented, competitor-oriented and relationship-oriented behaviors. We test the hypothesized model using a dataset of 354 responses collected via an on-line questionnaire from UK managers, whose organizations operate in business-to-business markets in either the manufacturing or services sectors. This study provides four key findings. First, a firm's networkoriented behaviors positively affect the development of customer-oriented and competitor-oriented behaviors. Secondly, they also foster relationship coordination with its important business partners within the network. Thirdly, the effective management of the firm's portfolio of relationships is found to mediate the positive impact of network-oriented behaviors on firm profitability. Lastly, closeness to end-users amplifies the positive effect of network-oriented behaviors on relationship portfolio effectiveness

    Modelling and trading the Greek stock market with gene expression and genetic programing algorithms

    Get PDF
    This paper presents an application of the gene expression programming (GEP) and integrated genetic programming (GP) algorithms to the modelling of ASE 20 Greek index. GEP and GP are robust evolutionary algorithms that evolve computer programs in the form of mathematical expressions, decision trees or logical expressions. The results indicate that GEP and GP produce significant trading performance when applied to ASE 20 and outperform the well-known existing methods. The trading performance of the derived models is further enhanced by applying a leverage filter

    Natural variation at XND1 impacts root hydraulics and trade-off for stress responses in Arabidopsis

    Get PDF
    Soil water uptake by roots is a key component of plant performance and adaptation to adverse environments. Here, we use a genome-wide association analysis to identify the XYLEM NAC DOMAIN 1 (XND1) transcription factor as a negative regulator of Arabidopsis root hydraulic conductivity (Lp). The distinct functionalities of a series of natural XND1 variants and a single nucleotide polymorphism that determines XND1 translation efficiency demonstrate the significance of XND1 natural variation at species-wide level. Phenotyping of xnd1 mutants and natural XND1 variants show that XND1 modulates Lp through action on xylem formation and potential indirect effects on aquaporin function and that it diminishes drought stress tolerance. XND1 also mediates the inhibition of xylem formation by the bacterial elicitor flagellin and counteracts plant infection by the root pathogen Ralstonia solanacearum. Thus, genetic variation at XND1, and xylem differentiation contribute to resolving the major trade-off between abiotic and biotic stress resistance in Arabidopsis

    Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion

    Get PDF
    Intra-endolysosomal Ca(2+) release is required for endolysosomal membrane fusion with intracellular organelles. However, the molecular mechanisms for intra-endolysosomal Ca(2+) release and the downstream Ca(2+) targets involved in the fusion remain elusive. Previously, we demonstrated that endolysosomal P2X4 forms channels activated by luminal adenosine triphosphate in a pH-dependent manner. In this paper, we show that overexpression of P2X4, as well as increasing endolysosomal P2X4 activity by alkalinization of endolysosome lumen, promoted vacuole enlargement in cells and endolysosome fusion in a cell-free assay. These effects were prevented by inhibiting P2X4, expressing a dominant-negative P2X4 mutant, and disrupting the P2X4 gene. We further show that P2X4 and calmodulin (CaM) form a complex at endolysosomal membrane where P2X4 activation recruits CaM to promote fusion and vacuolation in a Ca(2+)-dependent fashion. Moreover, P2X4 activation-triggered fusion and vacuolation were suppressed by inhibiting CaM. Our data thus suggest a new molecular mechanism for endolysosomal membrane fusion involving P2X4-mediated endolysosomal Ca(2+) release and subsequent CaM activation
    • …
    corecore