5,118 research outputs found

    Improved Hamiltonian for Minkowski Yang-Mills Theory

    Get PDF
    I develop an improved Hamiltonian for classical, Minkowski Yang-Mills theory, which evolves infrared fields with corrections from lattice spacing aa beginning at O(a4)O(a^4). I use it to investigate the response of Chern-Simons number to a chemical potential, and to compute the maximal Lyapunov exponent. Both quantities have small aa limits, in both cases within 10%10\% of the limit found using the unimproved (Kogut Susskind) Hamiltonian. For the maximal Lyapunov exponent the limits differ by about 5%5 \% , significant at about 5σ5 \sigma, indicating that while a small aa limit exists, its value is corrupted by lattice artefacts. For the response of Chern-Simons number the statistics are not good enough to resolve 5% 5 \% differences, but it seems possible in analogy with the Lyapunov exponent that the final answer depends on the lattice regulation.Comment: Latex, 33 pages plus 2 .epsi figures included with psfig. Revised to include new data which weakens some original conclusion

    Gravity and BF theory defined in bounded regions

    Get PDF
    We study Einstein gravity in a finite spatial region. By requiring a well-defined variational principle, we identify all local boundary conditions, derive surface observables, and compute their algebra. The observables arise as induced surface terms, which contribute to a non-vanishing Hamiltonian. Unlike the asymptotically flat case, we find that there are an infinite number of surface observables. We give a similar analysis for SU(2) BF theory.Comment: References adde

    The perturbed universe in the deformed algebra approach of Loop Quantum Cosmology

    Full text link
    Loop quantum cosmology is a tentative approach to model the universe down to the Planck era where quantum gravity settings are needed. The quantization of the universe as a dynamical space-time is inspired by Loop Quantum Gravity ideas. In addition, loop quantum cosmology could bridge contact with astronomical observations, and thus potentially investigate quantum cosmology modellings in the light of observations. To do so however, modelling both the background evolution and its perturbations is needed. The latter describe cosmic inhomogeneities that are the main cosmological observables. In this context, we present the so-called deformed algebra approach implementing the quantum corrections to the perturbed universe at an effective level by taking great care of gauge issues. We particularly highlight that in this framework, the algebra of hypersurface deformation receives quantum corrections, and we discuss their meaning. The primordial power spectra of scalar and tensor inhomogeneities are then presented, assuming initial conditions are set in the contracting phase preceding the quantum bounce and the well-known expanding phase of the cosmic history. These spectra are subsequently propagated to angular power spectra of the anisotropies of the cosmic microwave background. It is then shown that regardless of the choice for the initial conditions inside the effective approach for the background evolution (except that they are set in the contracting phase), the predicted angular power spectra of the polarized B-modes exceed the upper bound currently set by observations. The exclusion of this specific version of loop quantum cosmology establishes the falsifiability of the approach, though one shall not conclude here that either loop quantum cosmology or loop quantum gravity is excluded.Comment: Invited paper for a special issue of IJMPD on Loop Quantum Cosmolog

    Ξ\theta-Term and Cosmological Constant from CJD Action

    Full text link
    In the gravity without metric formalism of Capovilla, Jacobson and Dell, the topological Ξ\theta-term appears through a canonical transformation.The origin of this canonical transformation is probed here. It is shown here that when Ξ\theta-term appears cosmological λ\lambda-term also appears simultaneously.Comment: 5 page

    Boundary conditions in first order gravity: Hamiltonian and Ensemble

    Full text link
    In this work two different boundary conditions for first order gravity, corresponding to a null and a negative cosmological constant respectively, are studied. Both boundary conditions allows to obtain the standard black hole thermodynamics. Furthermore both boundary conditions define a canonical ensemble. Additionally the quasilocal energy definition is obtained for the null cosmological constant case.Comment: To be published in Phys, Rev.

    A cross-cultural re-evaluation of the Exercise Addiction Inventory (EAI) in five countries

    Get PDF
    Research into the detrimental effects of excessive exercise has been conceptualized in a number of similar ways, including ‘exercise addiction’ , ‘exercise dependence’ , ‘obligatory exercising’, ‘exercise abuse’, and ‘compulsive exercise’. Among the most currently used (and psychometrically valid and reliable) instruments is the Exercise Addiction Inventory (EAI). The present study aimed to further explore the psychometric properties of the EAI by combining the datasets of a number of surveys carried out in five different countries (Denmark, Hungary, Spain, UK, and US) that have used the EAI with a total sample size of 6,031 participants. A series of multigroup confirmatory factor analyses (CFAs) were carried out examining configural invariance, metric invariance, and scalar invariance. The CFAs using the combined dataset supported the configural invariance and metric invariance but not scalar invariance. Therefore, EAI factor scores from five countries are not comparable because the use or interpretation of the scale was different in the five nations. However, the covariates of exercise addiction can be studied from a cross-cultural perspective because of the metric invariance of the scale. Gender differences among exercisers in the interpretation of the scale also emerged. The implications of the results are discussed, and it is concluded that the study’s findings will facilitate a more robust and reliable use of the EAI in future research

    Multicanonical Recursions

    Get PDF
    The problem of calculating multicanonical parameters recursively is discussed. I describe in detail a computational implementation which has worked reasonably well in practice.Comment: 23 pages, latex, 4 postscript figures included (uuencoded Z-compressed .tar file created by uufiles), figure file corrected

    Multi-word expression-sensitive word alignment

    Get PDF
    This paper presents a new word alignment method which incorporates knowledge about Bilingual Multi-Word Expressions (BMWEs). Our method of word alignment first extracts such BMWEs in a bidirectional way for a given corpus and then starts conventional word alignment, considering the properties of BMWEs in their grouping as well as their alignment links. We give partial annotation of alignment links as prior knowledge to the word alignment process; by replacing the maximum likelihood estimate in the M-step of the IBM Models with the Maximum A Posteriori (MAP) estimate, prior knowledge about BMWEs is embedded in the prior in this MAP estimate. In our experiments, we saw an improvement of 0.77 Bleu points absolute in JP–EN. Except for one case, our method gave better results than the method using only BMWEs grouping. Even though this paper does not directly address the issues in Cross-Lingual Information Retrieval (CLIR), it discusses an approach of direct relevance to the field. This approach could be viewed as the opposite of current trends in CLIR on semantic space that incorporate a notion of order in the bag-of-words model (e.g. co-occurences)

    Loop Quantum Cosmology corrections on gravity waves produced during primordial inflation

    Full text link
    Loop Quantum Gravity (L.Q.G.) is one of the two most promising tentative theory for a quantum description of gravity. When applied to the entire universe, the so-called Loop Quantum Cosmology (L.Q.C.) framework offers microscopical models of the very early stages of the cosmological history, potentially solving the initial singularity problem via bouncing solutions or setting the universe in the appropriate initial conditions for inflation to start, via a phase of super-inflation. More interestingly, L.Q.C. could leave a footprint on cosmological observables such as the Cosmic Microwave Background (CMB) anisotropies. Focusing on the modified dispersion relation when holonomy and inverse-volume corrections arising from the L.Q.C. framework are considered, it is shown that primordial gravity waves generated during inflation are affected by quantum corrections. Depending on the type of corrections, the primordial tensor power spectrum is either suppressed or boosted at large length scales, and strongly departs from the power-law behavior expected in the standard scenario.Comment: to be published in the AIP Proceedings of the 'Invisible Universe International Conference', UNESCO-Paris, June 29-July 3, 2009; 9 pp., 4 Fig
    • 

    corecore