2,100 research outputs found

    Tool for fast mismatch analysis of analog circuits

    Get PDF
    A tool is presented that evaluates statistical deviations in performance characteristics of analog circuits, starting from statistical deviations in the technological parameters of MOS transistors. Performance is demonstrated via the analysis of a Miller OTA in two different configurations and a linearized CMOS transconductor. The CPU time is reduced by a factor of 25 to 90 with respect to conventional Monte Carlo simulation, while maintaining similar accuracy in the computations

    LC-VCO design optimization methodology based on the gm/ID ratio for nanometer CMOS technologies

    Get PDF
    In this paper, an LC voltage-controlled oscillator (LC-VCO) design optimization methodology based on the gm/ID technique and on the exploration of all inversion regions of the MOS transistor (MOST) is presented. An in-depth study of the compromises between phase noise and current consumption permits optimization of the design for given specifications. Semiempirical models of MOSTs and inductors, obtained by simulation, jointly with analytical phase noise models, allow to get a design space map where the design tradeoffs are easily identified. Four LC-VCO designs in different inversion regions in a 90-nm CMOS process are obtained with the proposed methodology and verified with electrical simulations. Finally, the implementation and measurements are presented for a 2.4-GHz VCO operating in moderate inversion. The designed VCO draws 440 μA from a 1.2-V power supply and presents a phase noise of -106.2 dBc/Hz at 400 kHz from the carrier

    The Nyquist criterion: a useful tool for the robust design of continuous-time ΣΔ modulators

    Get PDF
    This paper introduces a figure of merit for the robustness of continuous-time sigma-delta modulators. It is based on the Nyquist criterion for the equivalent discrete-time (DT) loop filter. It is shown how continuous-time modulators can be designed by optimizing this figure of merit. This way modulators with increased robustness against variations in the noise-transfer function (NTF) parameters are obtained. This is particularly useful for constrained systems, where the system order exceeds the number of design parameters. This situation occurs for example due to the effect of excess loop delay (ELD) or finite gain bandwidth (GBW) of the opamps. Additionally, it is shown that the optimization is equivalent to the minimization of H_infinity, the maximum out-of-band gain of the NTF. This explains why conventional design strategies that are based on H_infinity, such as Schreier’s approach, provide quite robust modulator designs in the case of unconstrained architectures

    A Review of Bayesian Methods in Electronic Design Automation

    Full text link
    The utilization of Bayesian methods has been widely acknowledged as a viable solution for tackling various challenges in electronic integrated circuit (IC) design under stochastic process variation, including circuit performance modeling, yield/failure rate estimation, and circuit optimization. As the post-Moore era brings about new technologies (such as silicon photonics and quantum circuits), many of the associated issues there are similar to those encountered in electronic IC design and can be addressed using Bayesian methods. Motivated by this observation, we present a comprehensive review of Bayesian methods in electronic design automation (EDA). By doing so, we hope to equip researchers and designers with the ability to apply Bayesian methods in solving stochastic problems in electronic circuits and beyond.Comment: 24 pages, a draft version. We welcome comments and feedback, which can be sent to [email protected]

    Simulation and implementation of novel deep learning hardware architectures for resource constrained devices

    Get PDF
    Corey Lammie designed mixed signal memristive-complementary metal–oxide–semiconductor (CMOS) and field programmable gate arrays (FPGA) hardware architectures, which were used to reduce the power and resource requirements of Deep Learning (DL) systems; both during inference and training. Disruptive design methodologies, such as those explored in this thesis, can be used to facilitate the design of next-generation DL systems

    Technology Independent Synthesis of CMOS Operational Amplifiers

    Get PDF
    Analog circuit design does not enjoy as much automation as its digital counterpart. Analog sizing is inherently knowledge intensive and requires accurate modeling of the different parametric effects of the devices. Besides, the set of constraints in a typical analog design problem is large, involving complex tradeoffs. For these reasons, the task of modeling an analog design problem in a form viable for automation is much more tedious than the digital design. Consequently, analog blocks are still handcrafted intuitively and often become a bottleneck in the integrated circuit design, thereby increasing the time to market. In this work, we address the problem of automatically solving an analog circuit design problem. Specifically, we propose methods to automate the transistor-level sizing of OpAmps. Given the specifications and the netlist of the OpAmp, our methodology produces a design that has the accuracy of the BSIM models used for simulation and the advantage of a quick design time. The approach is based on generating an initial first-order design and then refining it. In principle, the refining approach is a simulated-annealing scheme that uses (i) localized simulations and (ii) convex optimization scheme (COS). The optimal set of input variables for localized simulations has been selected by using techniques from Design of Experiments (DOE). To formulate the design problem as a COS problem, we have used monomial circuit models that are fitted from simulation data. These models accurately predict the performance of the circuit in the proximity of the initial guess. The models can also be used to gain valuable insight into the behavior of the circuit and understand the interrelations between the different performance constraints. A software framework that implements this methodology has been coded in SKILL language of Cadence. The methodology can be applied to design different OpAmp topologies across different technologies. In other words, the framework is both technology independent and topology independent. In addition, we develop a scheme to empirically model the small signal parameters like \u27gm\u27 and \u27gds\u27 of CMOS transistors. The monomial device models are reusable for a given technology and can be used to formulate the OpAmp design problem as a COS problem. The efficacy of the framework has been demonstrated by automatically designing different OpAmp topologies across different technologies. We designed a two-stage OpAmp and a telescopic OpAmp in TSMC025 and AMI016 technologies. Our results show significant (10–15%) improvement in the performance of both the OpAmps in both the technologies. While the methodology has shown encouraging results in the sub-micrometer regime, the effectiveness of the tool has to be investigated in the deep-sub-micron technologies

    Metodologia Per la Caratterizzazione di amplificatori a basso rumore per UMTS

    Get PDF
    In questo lavoro si presenta una metodologia di progettazione elettronica a livello di sistema, affrontando il problema della caratterizzazione dello spazio di progetto dell' amplificatore a basso rumore costituente il primo stadio di un front end a conversione diretta per UMTS realizzato in tecnologia CMOS con lunghezza di canale .18u. La metodologia è sviluppata al fine di valutare in modo quantititativo le specifiche ottime di sistema per il front-end stesso e si basa sul concetto di Piattaforma Analogica, che prevede la costruzione di un modello di prestazioni per il blocco analogico basato su campionamento statistico di indici di prestazioni del blocco stesso, misurati tramite simulazione di dimensionamenti dei componenti attivi e passivi soddisfacenti un set di equazioni specifico della topologia circuitale. Gli indici di prestazioni vengono successivamente ulizzati per parametrizzare modelli comportamentali utilizzati nelle fasi di ottimizzazione a livello di sistema. Modelli comportamentali atti a rappresentare i sistemi RF sono stati pertanto studiati per ottimizzare la scelta delle metriche di prestazioni. L'ottimizzazione dei set di equazioni atti a selezionare le configurazione di interesse per il campionamento ha al tempo stesso richiesto l'approfondimento dei modelli di dispositivi attivi validi in tutte le regioni di funzionamento, e lo studio dettagliato della progettazione degli amplificatori a basso rumore basati su degenerazione induttiva. Inoltre, il problema della modellizzazione a livello di sistema degli effetti della comunicazione tra LNA e Mixer è stato affrontato proponendo e analizzando diverse soluzioni. Il lavoro ha permesso di condurre un'ottimizzazione del front-end UMTS, giungendo a specifiche ottime a livello di sistema per l'amplificatore stesso

    Characterization of process variability and robust optimization of analog circuits

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 161-174).Continuous scaling of CMOS technology has enabled dramatic performance enhancement of CMOS devices and has provided speed, power, and density improvement in both digital and analog circuits. CMOS millimeter-wave applications operating at more than 50GHz frequencies has become viable in sub-100nm CMOS technologies, providing advantages in cost and high density integration compared to other heterogeneous technologies such as SiGe and III-V compound semiconductors. However, as the operating frequency of CMOS circuits increases, it becomes more difficult to obtain sufficiently wide operating ranges for robust operation in essential analog building blocks such as voltage-controlled oscillators (VCOs) and frequency dividers. The fluctuations of circuit parameters caused by the random and systematic variations in key manufacturing steps become more significant in nano-scale technologies. The process variation of circuit performance is quickly becoming one of the main concerns in high performance analog design. In this thesis, we show design and analysis of a VCO and frequency divider operating beyond 70GHz in a 65nm SOI CMOS technology. The VCO and frequency divider employ design techniques enlarging frequency operating ranges to improve the robustness of circuit operation. Circuit performance is measured from a number of die samples to identify the statistical properties of performance variation. A back-propagation of variation (BPV) scheme based on sensitivity analysis of circuit performance is proposed to extract critical circuit parameter variation using statistical measurement results of the frequency divider. We analyze functional failure caused by performance variability, and propose dynamic and static optimization methods to improve parametric yield. An external bias control is utilized to dynamically tune the divider operating range and to compensate for performance variation. A novel time delay model of a differential CML buffer is proposed to functionally approximate the maximum operating frequency of the frequency divider, which dramatically reduces computational cost of parametric yield estimation. The functional approximation enables the optimization of the VCO and frequency divider parametric yield with a reasonable amount of simulation time.by Daihyun Lim.Ph.D

    Design methodologies, models and tools for very-large-scale integration of NEM relay-based circuits

    Get PDF
    corecore